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Motivation

Between january 2012 and september de 2015, all homicides
and 25% of all crimes reported in Bogotá occured in 2%
of street segments.

During the same period these segments received only 10% of
the attention of police resources (Blattman et.al 2017).

We would like to predict.2

2
Á. J. R. Villegas, J. S. M. Pabón, M. Dulce Rubio, S. Quintero, J. G. Vargas and H. Garćıa, “Spatio

Temporal Sparsity in Homicide Prediction Models,” in IEEE Access, vol. 10, pp. 14359-14367, 2022.
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Applications

Figura 1: Hotspots, Cameras, Police Stations.
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Challenges

No technology comes without costs and challenges:

Interpretability. 3

Discrimination.4

Under-reporting and feedback loop.

Equilibrium and causality.

3
Zero-Inflated Embeddings to Analyze Homicide Occurences Patterns. Benavides, H., Gomez O., Dulce M.,

Rodriguez, P., Riascos, A., and Moreno, J. 2nd International Conference on Computing and Data Science, 2021.
4
Urcuqui, C., Moreno, J., Montenegro, C., Riascos, A., Dulce, M. (2020, November). Accuracy and Fairness

in a Conditional Generative Adversarial Model of Crime Prediction. In 2020 7th International Conference on
Behavioural and Social Computing (BESC) (pp. 1-6). IEEE.
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Introduction: It is a common phenomenon

Non-sampling errors in survey sampling.

Food inspection services.

Child services.

Pest controls.

Building’s compliance safety regulations.

Animal poaching surveillance.

Crime incidents in a city.
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Introduction: Implications

Bias prediction models due to feedback loop.56

Can be used strategically.

Misallocation of resources: 7

5
Lum, K., and I., William. 2016. To predict and serve?

6
Akpinar, N. and De-Arteaga, M., and Chouldechova, A. 2021. The Effect of Differential Victim Crime

Reporting on Predictive Policing Systems.
7
Aaron, Ch., and J. McCrary. 2018. Are U.S. Cities Underpoliced? Theory and Evidence.
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Related Work

Unit non-response in survey sampling: (i) weighted
adjustment of estimators and (ii) data imputation.8

Fairness in allocating problem where the monitoring of
incidents is censored in a well defined way.9

Our problem is similar the online resource allocation problem.
10

We draw heavily on Chen. et.al (2014) and others, by adapting
their online algorithms to our problem and estimating our
parametrized model of under-reporting in a online setup.

8
Särndal, C., Swensson, B and Wretman, J. 2003. Model Assisted Survey Sampling.

9
Elzayn, H., Shahin J., Jung, Ch., Kearns, M., Seth N., Roth, A. and S. Zachary. 2018. Fair Algorithms for

Learning in Allocation Problems.
10

Chen, W., Wang., Yajun.., Y, Yang., and W, Qinshi. 2014. Combinatorial Multi-Armed Bandit and Its
Extension to Probabilistically Triggered Arms.
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The Model

Spatial events: Xi ,t , where i indexes a spatial location and t
indexes the round of the interaction.

Unobserved or filtered observations: a random variable X̃i ,t .

Application: Xi ,t binomial with parameter µ, X̃i ,t | Xi ,t

binomial parameter q.

Objective: in a repeated interaction with this environment
learn the true mean of the distributions: Xi ,t and X̃i ,t .
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Algorithms:CUCB

Combinatorial Upper Confidence Bound Algorithm (CUCB)
with under-reporting

1: For each arm i , set µ̄i = ḿın
{
µ̂i +

√
3 ln t
2Ti

, 1
}
.

2: Play S = Oracle(µ̄1, µ̄2, . . . , µ̄m).
3: Update all Ti ’s and µ̂i ’s.
4: For i /∈ S , observe X̃i ,t conditional to outcomes played by base

arms i .
5: Update q̂i =

Empirical mean of under-reporting so far observed
nµ̂i
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Algorithms: LLR, UCB1

Learning with Linear Rewards (LLR) algorithm in the
following way. Replace in CUCB:

µ̄ = µ̂i +

√
(M + 1) ln t

Ti
(1)

UCB1 algorithm ignores the potential association between
arms:

µ̂i +

√
2
ln t

Ti
(2)
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Validation: Basic parameters

Four experiments: 12, 100, 1,000 and 50,000 arms.

M k Tmax n

12 2 1000 1000

Cuadro 1: Global parameters. M is the number of arms, K the size of the
super arm, Tmax the of maximum number of simulations and n is the
number of trials of each binomial distribution.
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Validation: Convergence µ

Figura 2: CUCB Convergence to true arms mean.
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Validation: Convergence q

Figura 3: CUCB Convergence to true arms under-reporting parameters.
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Validation: Visits

Figura 4: Number of visits (i.e., fired arms) of algorithms to each arm.
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Validation: Time to Completion

Case 1 Case 2 Case 3

UCB1 3 sec 38 sec 3 min 31 sec
LLR 4 sec 51 sec 4 min 15 sec
CUCB 4 sec 53 sec 4 min 12 sec

Cuadro 2: Time to completion. Case 1: M = 1, 000 and K = 100. Case
2: M = 10, 000 and K = 1, 000. Case 3: M = 50, 000 and K = 5, 000.
sec is seconds, min is minutes.
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Data: Evidence of under-reporting Bogotá

ID District Pop. Vict. Rate Rep. Rate

15 Antonio Nariño 109,176 15 % 33%
12 Barrios Unidos 243,465 12 % 22%
07 Bosa 673,077 13 % 26%
17 Candelaria 24,088 12 % 22%
02 Chapinero 139,701 9 % 28%
19 Ciudad Boĺıvar 707,569 8 % 17%
10 Engativá 88,708 11 % 20%
09 Fontibón 394,648 10 % 19%
08 Kennedy 1,088,443 13 % 28%
14 Los Mártires 99,119 17 % 25%
16 Puente Aranda 258,287 14 % 32%
18 Rafael Uribe Uribe 374,246 12 % 15%
04 San Cristóbal 404,697 13 % 21%
03 Santa Fe 110,048 17 % 17%
11 Suba 1,218,513 5 % 19%
13 Teusaquillo 1,53,025 14 % 19%
06 Tunjuelito 19,943 17 % 23%
01 Usaquén 501,999 18 % 13%
05 Usme 457,302 9 % 33%

Cuadro 3: Results of Bogotá’s City Chamber of Commerce, victimization
and reporting survey 2014. We use reported rates form each jurisdiction
to estimate under-reporting simulated form our Poisson model. The table
also reports the population of each jurisdiction and victimization rate.
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Data: Real Crime Estimation

Figura 5: Crimes by source of information: SIEDCO is the official source
of information of crimes in Bogotá. NUSE is the security emergency call
center of the city. Total is the sum of both sources eliminating double
counting.
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Arms

Figura 6: Bogotá, capital city of Colombia. Figure shows the 19
jurisdictions in which the city is divided and our grid of 1 km2 cells.
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Results

Figura 7: Convergence of the vector of incidence rates µ to the mean of
all crimes per cell across time.



Introduction Under-reporting Equilibrium

Results

Figura 8: Convergence of estimated vector q per round to the empirical
mean of the under-reporting rate for the whole sample. Euclidean
distance reported.
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Results

Figura 9: Histogram of convergence of estimated error of q in the last
round to the empirical mean of the under-reporting rate for the whole
sample. Absolute value reported.
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Results

Figura 10: Convergence of the estimated total number of crimes to the
observed number of crimes in the city.
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Results

Figura 11: Convergence of the estimated total (aggregate across cells of)
number of under-reported crimes implied by the model.
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Results

Figura 12: Heat map illustrating the convergence, using CUCB algorithm, of the estimated crime and
under-reporting of events in the city, to the real values. The first column, second and third rows shows the heat
map of the estimated crime incidence rates after 25 iterations and 100 iterations, respectively. The second column,
first row shows real under-reporting as measured by NUSE dataset. The second column, second and third rows
shows the heat map of the estimated under-reporting crime after 25 iterations and 100 iterations, respectively.
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Introduction

Prediction models ignore strategic reaction.

We use a unique experimental data to identify the causal
impact of police patrolling on crime.

Use of a structural model of crime location choice.

Estimate own-and cross-elasticities of crime to patrolling
time.

Evaluate alternative patrolling strategies.
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Related Work

Comprehensive study for the US: David Weisburd and Malay
K. Majmundar. 2018. Proactive Policing: Effects on Crime
and Communities.

Aaron, Ch., and J. McCrary. 2018. Are U.S. Cities
Underpoliced? Theory and Evidence:

1. Police elasticity (number of policemen) of violent crime
between −0.289 to −0.361.

2. Property crimes of −0.152 to −0.195.
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Related Work

Blattman, Ch., Green, D.,Ortega, D. and S. Tobón. 2021.
Place-based interventions at scale: The direct and spillover
effects of policing and city services on crime.

1. Randomly assigned 756 (206) streets to an 8-month
treatment of doubled police patrols (greater municipal
services) and measure the direct effect.

2. Measures spillovers (indirect effects) in streets in a radius
of 250 meters: 52, 095 (21, 286).

3. Confidence intervals suggest they can rule out total
reductions in crime of more than 2%.
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Spatial Discrete Choice Model

N potential criminal offenders with symmetric preferences,
each of them deciding between J + 1 locations in the city to
commit a crime.

The associated utility uij , of agent i , of selecting location j , is
given by

uij = αPj + Xjβ + ξj + εij (3)

where:

• Pj police presence in location j .
• Xj : K observed characteristics of the location.
• ξj :unobserved characteristics of location j .
• εij : idiosyncratic error term.
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Spatial Discrete Choice Model

Assume εij , εij ′ are i.i.d. extreme value type I distributed,
location choice probabilities are:

sij(Pj ,Xj , ξj ;α, β) =
exp(αPj + Xjβ + ξj)

1 +
∑J

k=1 exp(αPk + Xkβ + ξk)
(4)

where option j = 0 is assumed to be the outside option.

By symmetry of preferences:

Sj(Pj ,Xj , ξj ;α, β) = sij(Pj ,Xj , ξj ;α, β)



Introduction Under-reporting Equilibrium

Spatial Discrete Choice Model

Own- and cross-elasticities of crime:

∂Sj
∂Pℓ

=

{
αSj(1− Sj) if j = ℓ

−αSjSℓ if j ̸= ℓ
(5)

and

ESj ,Pℓ
≡

∂Sj
∂Pℓ

Pℓ

Sj
=

{
α(1− Sj)Pj if j = ℓ

−αSℓPℓ if j ̸= ℓ
. (6)
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Estimation

To estimate the structural parameters θ = (α, β) from
equation (??) we note that:

δj = log(Sj)− log(S0) = αPj + Xjβ + ξj , (7)
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Estimation: Endogeneity

Figura 13: OLS estimation: Biased estimates
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Estimation: TSLS

Starting in January 2016 and during 8 months, 756 out of
1,919 street segments labeled as crime hot spots (out of the
136,984 street segments) received a doubled patrolling time

We used this randomized treatment to instrument the police
presence Pj and identify α.



Results: Estimation (Double Selection)

that police presence reduces the probability of a potential criminal committing a crime in a protected
location.

Table 2: TSLS α estimates for the discrete spatial location choice model

Violent crimes Property crimes Total crimes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

α -0.004* -0.003* -0.005* -0.006** -0.004** -0.005*** -0.009** -0.008* -0.005** -0.005*** -0.008** -0.008*
(0.002) (0.001) (0.003) (0.003) (0.002) (0.002) (0.004) (0.005) (0.002) (0.002) (0.004) (0.004)

Observations 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050
Controls No Yes Yes Yes No Yes Yes Yes No Yes Yes Yes
Past police presence No No Yes Yes No No Yes Yes No No Yes Yes
Locality FE No No No Yes No No No Yes No No No Yes
R-squared -0.023 0.309 0.310 0.380 0.000 0.339 0.340 0.414 -0.035 0.187 0.190 0.281

Notes: *** p<0.01, ** p<0.05, * p<0.1. Cluster robust standard errors at the level of locality in parentheses.

According to Guimaraes, Figueirdo, and Woodward (2003), the estimates of a traditional Condi-
tional Logit model are equivalent to those of a Poisson Model with aggregated data. This is true since
the first-order conditions of the likelihood maximization of both models are equivalent (Guimaraes
et al., 2003). Therefore, in order to compare our model to the Poisson and the traditional CL logit
model, we additionally estimate a target-based Poisson Model using the number of reported crimes
in each quadrant as the dependent variable. We, again, deal with the endogeneity by instrumenting
Pj with the treatment assignment condition. However, in this case, estimates are recovered either by
the Generalized Method of Moments (GMM) or the Control Functions (CF) Methodology.11 Table 3
presents the α estimates of this Poisson Model. As can be seen, the estimates are very similar to those
presented in Table 2. This similarity aligns with the fact that our model is an aggregated version of
the CL model, and suggests that the methodology we implement in this paper is correct.

Table 3: α estimates from a target-based Poisson Regression Model

Violent crimes Property crimes Total crimes

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

α -0.004 -0.003** -0.005* -0.006** -0.007 -0.006*** -0.010** -0.010* -0.006* -0.005*** -0.008*** -0.008**
(0.003) (0.001) (0.002) (0.003) (0.005) (0.002) (0.004) (0.005) (0.003) (0.002) (0.003) (0.004)

Observations 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050 1,050
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Previos patrol time No No Yes Yes No No Yes Yes No No Yes Yes
Locality FE No No No Yes No No No Yes No No No Yes
Method GMM CF CF CF GMM CF CF CF GMM CF CF CF

Notes: *** p<0.01, ** p<0.05, * p<0.1. Cluster robust standard errors at the level of locality in parentheses.

Our results, on the other hand, contrast with those found by Blattman et al. (2021). In particular,
they find that doubling the police patrol time has no impact on crimes. Also, in their basic TSLS
specification, using as a dependent variable the level of crime, they find no effect of police patrol time
on overall crimes unless they interact it with the baseline crime. These differences between their and
our results might be driven either by 1) differences in the definition of the dependent variable, given
that they use the levels of crime while we use log-ratios of crime shares that depend on the definition of
N ; 2) differences in the statistical power, given that they only estimate the impact for hot spot street
segments, while we estimate it for all quadrants in the city,12 or 3) differences in the unit of analysis,
given that they estimated the impact for street segments, where the crime reports might be low, and
we estimated the impact for quadrants, where crime reports are greater by definition. It has also to
be noted that they use inverse probability weighting in their estimations to correct for endogenous
exposure to spillovers, as well as randomization inference to correct for fuzzy clustering Blattman et
al. (2021). Our results, however, are fairly robust to specifications and strongly suggest a negative
impact of police patrol time on crime.

11See Wooldridge (2010), chapters 8, 9, and 21 for technical details.
12Note that the intervention might benefit not only the treated segments but those around it. Since quadrants collect

several street segments, we might be identifying the aggregated effect

10

Figura 14: α TSLS estimation after double selection.



Results:Estimation Direct Elasticities

Figura 15: Impact of police presence on crime in the same location.



Results:Estimation Cross Elasticities

Figura 16: Impact of police presence on crime in different locations.
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Results: Optimal Policy

Violent crimes Property crimes Total crimes

Mean Sum Mean Sum Mean Sum

Observed 11.84 12,435 23.86 25,053 35.70 37,488

Model Predictions
(1) Original assignment 11.14 11,698 21.58 22,658 32.59 34,222
(2) Optimal assignment 10.35 10,863 19.75 20,739 30.91 32,459

Difference (2)-(1) -0.79 -862 -1.83 -1,919 -1.68 -1,763
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Results: Alternative Policies

Figura 17
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Results: Alternative Policies

Figura 18
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Conclusions

Switching to the optimal time allocation policy, average
reduction of

• −7% violent crimes per quadrant.
• −8.5% in property crimes.
• −5.2% in total crimes.

That is a reduction of 862 violent crimes, 1, 919 property
crimes and 1, 763 in one year.
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