Chapter 5

Three Learning Principles

The study of learning from data highlights some general principles that are
fascinating concepts in their own right. Having gone through the mathematical
analysis and empirical illustrations of the first few chapters, we have a good
foundation from which to articulate some of these principles and explain them
in concrete terms.

In this chapter, we will discuss three principles. The first one is related to
the choice of model and is called Occam’s razor. The other two are related
to data; sampling bias establishes an important principle about obtaining the
data, and data snooping establishes an important principle about handling
the data. A genuine understanding of these principles will protect you from
the most common pitfalls in learning from data, and allow you to interpret
generalization performance properly.

5.1 Occam’s Razor

Although it is not an exact quote of Einstein’s, it is often attributed to him
that “An explanation of the data should be made as simple as possible, but no
simpler.” A similar principle, Occam’s Razor, dates from the 14th century and
is attributed to William of Occam, where the ‘razor’ is meant to trim down
the explanation to the bare minimum that is consistent with the data.

In the context of learning, the penalty for model complexity which was
introduced in Section 2.2 is a manifestation of Occam’s razor. If Ei,(g) = 0,
then the explanation (hypothesis) is consistent with the data. In this case,
the most plausible explanation, with the lowest estimate of Foy; given in the
VC bound (2.14), happens when the complexity of the explanation (measured
by dyc(H)) is as small as possible. Here is a statement of the underlying
principle.

l The simplest model that fits the data is also the most plausible.
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Applying this principle, we should choose as simple a model as we think we can
get away with. Although the principle that simpler is better may be intuitive,
it is neither precise nor self-evident. When we apply the principle to learning
from data, there are two basic questions to be asked.

1. What does it mean for a model to be simple?

2. How do we know that simpler is better?

Let’s start with the first question. There are two distinct approaches to defin-
ing the notion of complexity, one based on a family of objects and the other
based on an individual object. We have already seen both approaches in our
analysis. The VC dimension in Chapter 2 is a measure of complexity, and it
is based on the hypothesis set H as a whole, i.e., based on a family of objects.
The regularization term of the augmented error in Chapter 4 is also a measure
of complexity, but in this case it is the complexity of an individual object,
namely the hypothesis h.

The two approaches to defining complexity are not encountered only in
learning from data; they are a recurring theme whenever complexity is dis-
cussed. For instance, in information theory, entropy is a measure of complexity
based on a family of objects, while minimum description length is a related
measure based on individual objects. There is a reason why this is a recurring
theme. The two approaches to defining complexity are in fact related.

When we say a family of objects is complex, we mean that the family is
‘big’. That is, it contains a large variety of objects. Therefore, each individual
object in the family is one of many. By contrast, a simple family of objects is
‘small’; it has relatively few objects, and each individual object is one of few.

Why is the sheer number of objects an indication of the level of complexity?
The reason is that both the number of objects in a family and the complexity
of an object are related to how many parameters are needed to specify the
object. When you increase the number of parameters in a learning model, you
simultaneously increase how diverse H is and how complex the individual A is.
For example, consider 17th order polynomials versus 3rd order polynomials.
There is more variety in 17th order polynomials, and at the same time the
individual 17th order polynomial is more complex than a 3rd order polynomial.

The most common definitions of object complexity are based on the number
of bits needed to describe an object. Under such definitions, an object is simple
if it has a short description. Therefore, a simple object is not only intrinsically
simple (as it can be described succinctly), but it also has to be one of few,
since there are fewer objects that have short descriptions than there are that
have long descriptions, as a matter of simple counting.

Exercise 5.1

Consider hypothesis sets 7{; and H100 that contain Boolean functions on 10
Boolean variables, so X = {—1,+1}10. H1 contains all Boolean functions

168




5. THREE LEARNING PRINCIPLES 5.1. Occam’s RAZOR

which evaluate to +1 on exactly one input point, and to —1 elsewhere;
Hio0o. contains all Boolean functions which evaluate to +1 on exactly 100
input points, and to —1 elsewhere.

(a) How big (number of hypotheses) are #1 and Higo?
(b) How many bits are needed to specify one of the hypotheses in #;?
(c) How many bits are needed to specify one of the hypotheses in H1007?

We now address the second question. When Occam’s razor says that simpler
is better, it doesn’t mean simpler is more elegant. It means simpler has a
better chance of being right. Occam’s razor is about performance, not about
aesthetics. If a complex explanation of the data performs better, we will
take it.

The argument that simpler has a better chance of being right goes as fol-
lows. We are trying to fit a hypothesis to our data D = {(x1,31), -, (xn,yn)}
(assume y,,’s are binary). There are fewer simple hypotheses than there are
complex ones. With complex hypotheses, there would be enough of them to
shatter xq, -+, X, so it is certain that we can fit the data set regardless of
what the labels y1, -+ ,yn are, even if these are completely random. There-
fore, fitting the data does not mean much. If, instead, we have a simple model
with few hypotheses and we still found one that perfectly fits the dichotomy
D = {(x1,y1), -+, (xn,yn)}, this is surprising, and therefore it means some-
thing.

Occam’s Razor has been formally proved under different sets of idealized
conditions. The above argument captures the essence of these proofs; if some-
thing is less likely to happen, then when it does happen it is more significant.
Let us look at an example.

Example 5.1. Suppose that one constructs a physical theory about the re-
sistivity of a metal under various temperatures. In this theory, aside from
some constants that need to be determined, the resistivity p has a linear de-
pendence on the temperature 7'. In order to verify that the theory is correct
and to obtain the unknown constants, 3 scientists conduct the following three
experiments and present their data to you.

resistivity p
resistivity p
resistivity p

temperature T’ temperature T' temperature T’
Scientist 1 Scientist 2 Scientist 3
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It is clear that Scientist 3 has produced the most convincing evidence for the
theory. If the measurements are exact, then, Scientist 2 has managed to falsify
the theory and we are back to the drawing board. What about Scientist 17
‘While he has not falsified the theory, has he provided any evidence for it? The
answer is no, for we can reverse the question. Suppose that the theory was not
correct, what could the data have done to prove him wrong? Nothing, since
any two points can be joined by a line. Therefore, the model is not just likely
to fit the data in this case, it is certain to do so. This renders the fit totally
insignificant when it does happen. O

This example illustrates a concept related to Occam’s Razor, which is the
axiom of non-falsifiability. The axiom asserts that the data should have some
chance of falsifying a hypothesis, if we are to conclude that it can provide
evidence for the hypothesis. One way to guarantee that every data set has
some chance at falsification is for the VC dimension of the hypothesis set
to be less than N, the number of data points. This is discussed further in
Problem 5.1. Here is another example of the same concept.

Example 5.2. Financial firms try to pick good traders (predictors of whether
the market will go up or not). Suppose that each trader is tested on their
prediction (up or down) over the next 5 days and those who perform well will
be hired. One might think that this process should produce better and better
traders on Wall Street. Viewed as a learning problem, consider each trader
to be a prediction hypothesis. Suppose that the hiring pool is ‘complex’; we
are interviewing 2° traders who happen to be a diverse set of people such that
their predictions over the next 5 days are all different. Necessarily one of these
traders gets it all correct, and will be hired. Hiring the trader through this
process may or may not be a good thing, since the process will pick someone
even if the traders are just flipping coins to make their predictions. A perfect
predictor always exists in this group, so finding one doesn’t mean much. If we
were interviewing only two traders, and one of them made perfect predictions,
that would mean something. O

Exercise 5.2

Suppose that for 5 weeks in a row, ‘a letter arrives in the mail that predicts
the outcome of the upcoming Monday night football game. You keenly
watch each ‘Monday and to your surprise, the prediction is correct each
time. On the day after the fifth game, ‘a letter arrives, stating that if you
wish to see next week's prediction, a payment of $50.00 is required. Should
you pay?

(a) How many possible predictions of win-lose are there for 5 games?

(b) If the sender wants to make sure that at least one person receives
correct predictions on all 5 games from him, how many people should
he target to begin with?
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(c) -After the first letter ‘predicting’ the outcome of the first game, how
many of the original recipients does he target with the second letter?

(d) How many letters altogether will have been sent at the end of the 5
weeks?

(e) If the cost of printing and mailing out each letter is $0.50, how much
would the sender make if the recipient of 5 correct predictions sent in
the $50.007

(f). Can you relate this situation to the growth function and the credibility
of fitting the data?

Learning from data takes Occam’s Razor to another level, going beyond “as
simple as possible, but no simpler.” Indeed, we may opt for ‘a simpler fit
than possible’, namely an imperfect fit of the data using a simple model over
a perfect fit using a more complex one. The reason is that the price we pay
for a perfect fit in terms of the penalty for model complexity in (2.14) may
be too much in comparison to the benefit of the better fit. This idea was
illustrated in Figure 3.7, and is a manifestation of overfitting. The idea is also
the rationale behind the recommended policy in Chapter 3: first try a linear
model — one of the simplest models in the arena of learning from data.

5.2 Sampling Bias

A vivid example of sampling bias happened in the 1948 US presidential election
between Truman and Dewey. On election night, a major newspaper carried
out a telephone poll to ask people how they voted. The poll indicated that
Dewey won, and the paper was so confident about the small error bar in its
poll that it declared Dewey the winner in its headline. When the actual votes
were counted, Dewey lost — to the delight of a smiling Truman.

©Associated Press
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This was not a case of statistical anomaly, where the newspaper was just
incredibly unlucky (remember the ¢ in the VC bound?). It was a case where
the sample was doomed from the get-go, regardless of its size. Even if the
experiment were repeated, the result would be the same. In 1948, telephones
were expensive and those who had them tended to be in an elite group that
favored Dewey much more than the average voter did. Since the newspaper did
its poll by telephone, it inadvertently used an in-sample distribution that was
different from the out-of-sample distribution. That is what sampling bias is.

If the data is sampled in a biased way, learning will pro-
duce a similarly biased outcome.

Applying this principle, we should make sure that the training and testing
distributions are the same; if not, our results may be invalid, or, at the very
least, require careful interpretation. ‘

If you recall, the VC analysis made very few assumptions, but one as-
sumption it did make was that the data set D is generated from the same
distribution that the final hypothesis g is tested on. In practice, we may en-
counter data sets that were not generated under those ideal conditions. There
are some techniques in statistics and in learning to compensate for the ‘mis-
match’ between training and testing, but not in cases where D was generated
with the exclusion of certain parts of the input space, such as the exclusion of
households with no telephones in the above example. There is nothing that
can be done when this happens, other than to admit that the result will not
be reliable — statistical bounds like Hoeffding and VC require a match between
the training and testing distributions.

There are many examples of how sampling bias can be introduced in data
collection. In some cases it is inadvertently introduced by an oversight, as
in the case of Dewey and Truman. In other cases, it is introduced because
certain types of data are not available. For instance, in our credit example of
Chapter 1, the bank created the training set from the database of previous cus-
tomers and how they performed for the bank. Such a set necessarily excludes
those who applied to the bank for credit cards and were rejected, because the
bank does not have data on how they would have performed if they were ac-
cepted. Since future applicants will come from a mixed population including
some who would have been rejected in the past, the ‘test set’ comes from a
different distribution than the training set, and we have a case of sampling
bias. In this particular case, if no data on the applicants that were rejected is
available, nothing much can be done other than to acknowledge that there is
a bias in the final predictor that learning will produce, since a representative
training set is just not available.

Exercise 5.3

In an experiment to determine the distribution of sizes of fish in a lake, a
net might be used to catch a representative sample of fish. The sample is
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then analyzed to find out the fractions of fish of different sizes. If the
sample is big enough, statistical conclusions may be drawn about the actual

distribution in the entire lake. Can you smell (<) sampling bias?

There are other cases, arguably more common, where sampling bias is intro-
duced by human intervention. It is not that uncommon for someone to throw
away training examples they don’t likel A Wall Street firm who wants to de-
velop an automated trading system might choose data sets when the market
was ‘behaving well’ to train the system, with the semi-legitimate justification
that they don’t want the noise to complicate the training process. They will
surely achieve that if they get rid of the ‘bad’ examples, but they will create a
system that can be trusted only in the periods when the market does behave
welll What happens when the market is not behaving well is anybody’s guess.
In general, throwing away training examples based on their values, e.g., ex-
amples that look like outliers or don’t conform to our preconceived ideas, is a
fairly common sampling bias trap.

Other biases. Sampling bias has also been called selection bias in the statis-
tics community. We will stick with the more descriptive term sampling bias
for two reasons. First, the bias arises in how the data was sampled; second, it
is less ambiguous because in the learning context, there is another notion of
selection bias drifting around — selection of a final hypothesis from the learning
model based on the data. The performance of the selected hypothesis on the
data is optimistically biased, and this could be denoted as a selection bias.
We have referred to this type of bias simply as bad generalization.

There are various other biases that have similar flavor. There is even
a special type of bias for the research community, called publication bias!
This refers to the bias in published scientific results because negative results
are often not published in the literature, whereas positive results are. The
common theme of all of these biases is that they render the standard statistical
conclusions invalid because the basic premise for such conclusions, that the
sampling distribution is the same as the overall distribution, does not hold
any more. In the field of learning from data, it is sampling bias in the training
set that we need to worry about.

5.3 Data Snooping

Data snooping is the most common trap for practitioners in learning from
data. The principle involved is simple enough,

If a data set has affected any step in the learning process,
its ability to assess the outcome has been compromised.
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Applying this principle, if you want an unbiased assessment of your learning
performance, you should keep a test set in a vault and never use it for learning
in any way. This is basically what we have been talking about all along in
training versus testing, but it goes beyond that. Even if a data set has not been
‘physically’ used for training, it can still affect the learning process, sometimes
in subtle ways.

Exercise 5.4

Consider the following approach to learning. By looking at the data, it
appears that the data is linearly separable, so we go ahead and use a simple
perceptron, and get a training error of zero after determining the optimal
set of weights. We now wish to make some generalization conclusions, so
we look up the dyc for our learning model and see that it is d+1. Therefore,
we use this value of dyc to get a bound on the test error.

(a) What is the problem with this bound - is it correct?

(b) Do we know the dyc for the learning model that we actually used? It
is this dyc that we need to use in the bound.

To avoid the pitfall in the above exercise, it is extremely important that you
choose your learning model before seeing any of the data. The choice can be
based on general information about the learning problem, such as the num-
ber of data points and prior knowledge regarding the input space and target
function, but not on the actual data set D. Failure to observe this rule will
invalidate the VC bounds, and any generalization conclusions will be up in the
air. Even a careful person can fall into the traps of data snooping. Consider
the following example.

Example 5.3. An investment bank wants to develop a system for forecasting
currency exchange rates. It has 8 years worth of historical data on the US
Dollar (USD) versus the British Pound (GBP), so it tries to use the data to see
if there is any pattern that can be exploited. The bank takes the series of daily
changes in the USD/GBP rate, normalizes it to zero mean and unit variance,
and starts to develop a system for forecasting the direction of the change. For
each day, it tries to predict that direction based on the fluctuations in the
previous 20 days. 75% of the data is used for training, and the remaining 25%
is set aside for testing the final hypothesis.

The test shows great success. The final hypothesis has a hit rate (per-
centage of time getting the direction right) of 52.1%. This may seem modest,
but in the world of finance you can make a lot of money if you get that
hit rate consistently. Indeed, over the 500 test days (2 years worth, as each
year has about 250 trading days), the cumulative profit of the system is a
respectable 22%.
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When the system is used in live trading, the performance deteriorates sig-
nificantly. In fact, it loses money. Why didn’t the good test performance
continue on the new data? In this case, there is a simple explanation and it
has to do with data snooping. Although the bank was careful to set aside
test points that were not used for training in order to properly evaluate the
final hypothesis, the test data had in fact affected the training process in a
subtle way. When the original series of daily changes was normalized to zero
mean and unit variance, all of the data was involved in this step. Therefore,
the test data that was extracted had already contributed to the choices made
by the learning algorithm by contributing to the values of the mean and the
variance that were used in normalization. Although this seems like a minor
effect, it is data snooping. When you plot the cumulative profit on the test
set with or without that snooping step, you see how snooping resulted in an
over-optimistic expectation compared to the realistic expectation that avoids
snooping.

It is not the normalization that was a bad idea. It is the involvement of
test data in that normalization, which contaminated this data and rendered
its estimate of the final performance inaccurate. O

One of the most common occurrences of data snooping is the reuse of the
same data set. If you try learning using first one model and then another and
then another on the same data set, you will eventually ‘succeed’. As the saying
goes, if you torture the data long enough, it will confess ). If you try all
possible dichotomies, you will eventually fit any data set; this is true whether
we try the dichotomies directly (using a single model) or indirectly (using a
sequence of models). The effective VC dimension for the series of trials will
not be that of the last model that succeeded, but of the entire union of models
that could have been used depending on the outcomes of different trials.

Sometimes the reuse of the same data set is carried out by different people.
Let’s say that there is a public data set that you would like to work on. Before
you download the data, you read about how other people did with this data set
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using different techniques. You naturally pick the most promising techniques
as a baseline, then try to improve on them and introduce your own ideas.
Although you haven’t even seen the data set yet, you are already guilty of
data snooping. Your choice of baseline techniques was affected by the data
set, through the actions of others. You may find that your estimates of the
performance will turn out to be too optimistic, since the techniques you are
using have already proven well-suited to this particular data set.

To quantify the damage done by data snooping, one has to assess the
penalty for model complexity in (2.14) taking the snooping into consideration.
In the public data set case, the effective VC dimension corresponds to a much
bigger hypothesis set than the H that your learning algorithm uses. It covers
all hypotheses that were considered (and mostly rejected) by everybody else
in the process of coming up with the solutions that they published and that
you used as your baseline. This is a potentially huge set with very high VC
dimension, hence the generalization guarantees in (2.14) will be much worse
than without data snooping.

Not all data sets subjected to data snooping are equally ‘contaminated’.
The bounds in (1.6) in the case of a choice between a finite number of hy-
potheses, and in (2.12) in the case of an infinite number, provide guidelines
for the level of contamination. The more elaborate the choice made based on
a data set, the more contaminated the set becomes and the less reliable it will
be in gauging the performance of the final hypothesis.

Exercise 5.5

Assume we set aside 100 examples from D that will not be used in training,
but will be used to select one of three final hypotheses g1, g2, g3 produced by
three different learning algorithms that train on the rest on the data. Each
algorithm works with a different  of size 500. We would like to characterize
the accuracy of estimating Eout(g) on the selected final hypothesis if we
use the same 100 examples to make that estimate.

(a) What is the value of M that should be used in (1.6) in this situation?
(b) How does the level of contamination of these 100 examples compare

to the case where they would be used in training rather than in the
final selection?

In order to deal with data snooping, there are basically two approaches.

1. Avoid data snooping: A strict discipline in handling the data is required.
Data that is going to be used to evaluate the final performance should
be ‘locked in a safe’ and only brought out after the final hypothesis has
been decided. If intermediate tests are needed, separate data sets should
be used for that. Once a data set has been used, it should be treated as
contaminated as far as testing the performance is concerned.

2. Account for data snooping: If you have to use a data set more than
once, keep track of the level of contamination and treat the reliability of
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your performance estimates in light of this contamination. The bounds
(1.6) and (2.12) can provide guidelines for the relative reliability of dif-
ferent data sets that have been used in different roles within the learning
process.

Data snooping versus sampling bias. Sampling bias was defined based
on how the data was obtained before any learning; data snooping was defined
based on how the data affected the learning, in particular how the learning
model is selected. These are obviously different concepts. However, there are
cases where sampling bias occurs as a consequence of ‘snooping’ — looking at
data that you are not supposed to look at. Here is an example.

Consider predicting the performance of different stocks based on historical
data. In order to see if a prediction rule is any good, you take all currently
traded companies and test the rule on their stock data over the past 50 years.
Let us say that you are testing the “buy and hold” strategy, where you would
have bought the stock 50 years ago and kept it until now. If you test this
‘hypothesis’, you will get excellent performance in terms of profit. Well, don’t
get too excited! You inadvertently biased the results in your favor by picking
only currently traded companies, which means that the companies that did
not make it are not part of your evaluation. When you put your prediction
rule to work, it will be used on all companies whether they will survive or
not, since you cannot identify which companies today will be the ‘currently
traded’ companies 50 years from now. This is a typical case of sampling bias,
since the problem is that the training data is not representative of the test
data. However, if we trace the origin of the bias, we did ‘snoop’ in this case by
looking at future data of companies to determine which of these companies to
use in our training. Since we are using information in training that we would
not have access to in real trading, this is viewed as a form of data snooping.
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5.4 Problems

Problem 5.1 The idea of falsifiability — that a claim can be rendered
false by observed data — is an important principle in experimental science.

Axiom of Non-Falsifiability. If the outcome of an ezperiment
has no chance of falsifying a particular proposition, then the result
of that experiment does not provide evidence one way or another
toward the truth of the proposition.

Consider the proposition “There is h € H that approximates f as would be
evidenced by finding such an h with in-sample error zero on x1,--- ,xn." We
say that the proposition is falsified if no hypothesis in H can fit the data
perfectly.

(a) Suppose that H shatters x1,--- ,xn. Show that this proposition is not
falsifiable for any f.

(b) Suppose that f is random (f(x) = =1 with probability %, independently
on every x), so Eout(h) = 1 for every h € . Show that

P[falsification] > 1 — m;—l(vN) .
(c) Suppose dyve = 10 and N = 100. If you obtain a hypothesis h with zero
Ei, on your data, what can you ‘conclude’ from the result in part (b)?

Problem 5.2  Structural Risk Minimization (SRM) is a useful framework
for model selection that is related to Occam’s Razor. Define a structure — a
nested sequence of hypothesis sets:

Hi ) Ha H3

The SRM framework picks a hypothesis from each H; by minimizing Ein.
That is, g; = argmin Ein(h). Then, the framework selects the final hy-
heH;
pothesis by minimizing Ein and the model complexity penalty Q. That is,
g* = argmin(Ein(g:) +2(H;)). Note that Q(H;) should be non-decreasing in ¢
i=1

=1,2,"

because of the nested structure.

(a) Show that the in-sample error Ein(g:) is non-increasing in 4.
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(b) Assume that the framework finds g* € H; with probability p;. How does
p; relate to the complexity of the target function?

(c) Argue that the p;'s are unknown but pg <p1 <ps <.+ < 1.
(d) Suppose g* = g;. Show that

* 1 2
P(1Bin(9:) = Bou(g0)] > €] 9" = gi] < - - 4ma, (2N)e NS,

Here, the conditioning is on selecting g; as the final hypothesis by SRM.
[Hint: Use the Bayes theorem to decompose the probability and then
apply the VC bound on one of the terms]

You may interpret this result as follows: if you use SRM and end up with g;,
then the generalization bound is a factor i@ worse than the bound you would
have gotten had you simply started with #;.

Problem 5.3  In our credit card example, the bank starts with some vague
idea of what constitutes a good credit risk. So, as customers x1,%a,...,XN
arrive, the bank applies its vague idea to approve credit cards for some of these
customers. Then, only those who got credit cards are monitored to see if they
default or not.

For simplicity, suppose that the first N customers were given credit cards.
Now that the bank knows the behavior of these customers, it comes to you
to improve their algorithm for approving credit. The bank gives you the data
(Xlayl)w~~a(xN7yN)'

Before you look at the data, you do mathematical derivations and come up with
a credit approval function. You now test it on the data and, to your delight,
obtain perfect prediction.

(a) What is M, the size of your hypothesis set?

(b) With such an M, what does the Hoeffding bound say about the probability
that the true performance is worse than 2% error for N = 100007

(c) You give your g to the bank and assure them that the performance will
be better than 2% error and your confidence is given by your answer
to part (b). The bank is thrilled and uses your g to approve credit for
new clients. To their dismay, more than half their credit cards are being
defaulted on. Explain the possible reason(s) behind this outcome.

(d) Is there a way in which the bank could use your credit approval function
to have your probabilistic guarantee? How? [Hint: The answer is yes!]
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Problem 5.4  The S&P 500 is a set of the largest 500 companies currently
trading. Suppose there are 10, 000 stocks currently trading, and there have been
50, 000 stocks which have ever traded over the last 50 years (some of these have
gone bankrupt and stopped trading). We wish to evaluate the profitability of
various 'buy and hold’ strategies using these 50 years of data (roughly 12,500
trading days).

Since it is not easy to get stock data, we will confine our analysis to today's
S&P 500 stocks, for which the data is readily available.

(a) A stock is profitable if it went up on more than 50% of the days. Of your
S&P stocks, the most profitable went up on 52% of the days (Ein = 0.48).

(i) Since we picked the best among 500, using the Hoeffding bound,

P[|Ein — Fows| > 0.02] < 2 x 500 x e~ 2X12500x0:02% ¢ 45,

There is a greater than 95% chance this stock is profitable. Where
did we go wrong?

(ii) Give a better estimate for the probability that this stock is profitable.
[Hint: What should the correct M be in the Hoeffding bound?]

(b) We wish to evaluate the profitability of ‘buy and hold’ for general stock
trading. We notice that all of our 500 S&P stocks went up on at least 51%
of the days.

(i) We conclude that buying and holding a stocks is a good strategy for
general stock trading. Where did we go wrong?
(i) Can we say anything about the performance of buy and hold trading?

Problem 5.5 You think that the stock market exhibits reversal, so if
the price of a stock sharply drops you expect it to rise shortly thereafter. If it
sharply rises, you expect it to drop shortly thereafter.

To test this hypothesis, you build a trading strategy that buys when the stocks
go down and sells in the opposite case. You collect historical data on the current
S&P 500 stocks, and your hypothesis gave a good annual return of 12%.

(a) When you trade using this system, do you expect it to perform at this
level? Why or why not?

(b) How can you test your strategy so that its performance in sample is more
reflective of what you should expect in reality?

Problem 5.6  One often hears "Extrapolation is harder than interpolation.”
Give a possible explanation for this phenomenon using the principles in this
chapter. [Hint: training distribution versus testing distribution.]
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