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Redes Sociales
Segmentación de redes sociales (clustering)

Betweenness
Comunidades

Particiones
Simrank

Contenido

1 Redes Sociales

2 Segmentación de redes sociales (clustering)

3 Betweenness

4 Comunidades

5 Particiones

6 Simrank

Universidad de los Andes y Quantil Mineŕıa de Redes
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Redes Sociales

Una red social es un grafo pero t́ıpicamente con una
caracteŕıstica notoria de no aleatoridad o localidad.

Intuitivamnete si A y B y A y C están relacionados
probablemente B y C también lo están.

Otra caracteŕıstica importante de estas redes es la
conformación de comunidades (i.e., un individuo puede
pertenecer a varias comunidades). Lo que es distinto a
particiones.

Estudiaremoes tres formas de detección de comunidades:
métodos estándar de agrupamiento, betweenness y el método
basado en el Laplaciano.

Universidad de los Andes y Quantil Mineŕıa de Redes



Redes Sociales como Grafos

Intuitivamente es esta red un ejemplo de red social?10.1. SOCIAL NETWORKS AS GRAPHS 357
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Figure 10.1: Example of a small social network

(
7
2

)
= 21 pairs of nodes that could have had an edge between them. Suppose

X , Y , and Z are nodes of Fig. 10.1, with edges between X and Y and also
between X and Z. What would we expect the probability of an edge between
Y and Z to be? If the graph were large, that probability would be very close
to the fraction of the pairs of nodes that have edges between them, i.e., 9/21
= .429 in this case. However, because the graph is small, there is a noticeable
difference between the true probability and the ratio of the number of edges to
the number of pairs of nodes. Since we already know there are edges (X,Y )
and (X,Z), there are only seven edges remaining. Those seven edges could run
between any of the 19 remaining pairs of nodes. Thus, the probability of an
edge (Y, Z) is 7/19 = .368.

Now, we must compute the probability that the edge (Y, Z) exists in Fig.
10.1, given that edges (X,Y ) and (X,Z) exist. What we shall actually count
is pairs of nodes that could be Y and Z, without worrying about which node
is Y and which is Z. If X is A, then Y and Z must be B and C, in some
order. Since the edge (B,C) exists, A contributes one positive example (where
the edge does exist) and no negative examples (where the edge is absent). The
cases where X is C, E, or G are essentially the same. In each case, X has only
two neighbors, and the edge between the neighbors exists. Thus, we have seen
four positive examples and zero negative examples so far.

Now, considerX = F . F has three neighbors, D, E, and G. There are edges
between two of the three pairs of neighbors, but no edge between G and E.
Thus, we see two more positive examples and we see our first negative example.
If X = B, there are again three neighbors, but only one pair of neighbors,
A and C, has an edge. Thus, we have two more negative examples, and one
positive example, for a total of seven positive and three negative. Finally, when
X = D, there are four neighbors. Of the six pairs of neighbors, only two have
edges between them.

Thus, the total number of positive examples is nine and the total number
of negative examples is seven. We see that in Fig. 10.1, the fraction of times
the third edge exists is thus 9/16 = .563. This fraction is considerably greater
than the .368 expected value for that fraction. We conclude that Fig. 10.1 does
indeed exhibit the locality expected in a social network. ✷

Suponga que X ,Y ,Z son nodos en la red, si X ,Y y X ,Z
están enlazados, cuál es la probabilidad de que Y y Z también
lo esten?

En un grafo cualquiera con 7 nodos existen
(7
2

)
= 21 enlaces

posibles.

Ahora, en un grafo cualquiera con 7 nodos y 9 enlaces (no
necesariamente el de la figura), si sabemos que los nodos
X ,Y , y X ,Z arbitrarios estan enlazados entonces la
probabilidad de que Y y Z también lo esten es: 9−2

21−2 = 0,368.
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is pairs of nodes that could be Y and Z, without worrying about which node
is Y and which is Z. If X is A, then Y and Z must be B and C, in some
order. Since the edge (B,C) exists, A contributes one positive example (where
the edge does exist) and no negative examples (where the edge is absent). The
cases where X is C, E, or G are essentially the same. In each case, X has only
two neighbors, and the edge between the neighbors exists. Thus, we have seen
four positive examples and zero negative examples so far.

Now, considerX = F . F has three neighbors, D, E, and G. There are edges
between two of the three pairs of neighbors, but no edge between G and E.
Thus, we see two more positive examples and we see our first negative example.
If X = B, there are again three neighbors, but only one pair of neighbors,
A and C, has an edge. Thus, we have two more negative examples, and one
positive example, for a total of seven positive and three negative. Finally, when
X = D, there are four neighbors. Of the six pairs of neighbors, only two have
edges between them.

Thus, the total number of positive examples is nine and the total number
of negative examples is seven. We see that in Fig. 10.1, the fraction of times
the third edge exists is thus 9/16 = .563. This fraction is considerably greater
than the .368 expected value for that fraction. We conclude that Fig. 10.1 does
indeed exhibit the locality expected in a social network. ✷

Ahora calculemos esta probabilidad espećıficamente para la
red propuesta. El resultado es 9

16 = 0,563 que es bastante
mayor que el cáculo anterior.

Concluimos que esta red si tiene las caracteŕısticas de una red
social.
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Ejemplo: Empleabilidad

Granovetter (1960) entrevistó a muchas personas que
recientemente habian cambiado de trabajo. La mayoŕıa de las
personas lo hizo mediante contactos personales, pero no
directos sino conocidos.

Los sociologos racionalizan esto suponiendo que los contactos
cercanos tienen la misma información y solo los contactos
menos directos traen nueva información (oportunidades, etc.).

Granovetter formaliza esto mostrando que la mayoŕıa de los
contactos que resultaron en trabajos son puentes locales
débiles.

Universidad de los Andes y Quantil Mineŕıa de Redes



Puentes

50 CHAPTER 3. STRONG AND WEAK TIES
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Figure 3.3: The A-B edge is a bridge, meaning that its removal would place A and B in
distinct connected components. Bridges provide nodes with access to parts of the network
that are unreachable by other means.

Reasons for Triadic Closure. Triadic closure is intuitively very natural, and essentially

everyone can find examples from their own experience. Moreover, experience suggests some

of the basic reasons why it operates. One reason why B and C are more likely to become

friends, when they have a common friend A, is simply based on the opportunity for B and C

to meet: if A spends time with both B and C, then there is an increased chance that they

will end up knowing each other and potentially becoming friends. A second, related reason

is that in the process of forming a friendship, the fact that each of B and C is friends with

A (provided they are mutually aware of this) gives them a basis for trusting each other that

an arbitrary pair of unconnected people might lack.

A third reason is based on the incentive A may have to bring B and C together: if A is

friends with B and C, then it becomes a source of latent stress in these relationships if B

and C are not friends with each other. This premise is based in theories dating back to early

work in social psychology [217]; it also has empirical reflections that show up in natural but

troubling ways in public-health data. For example, Bearman and Moody have found that

teenage girls who have a low clustering coefficient in their network of friends are significantly

more likely to contemplate suicide than those whose clustering coefficient is high [48].

3.2 The Strength of Weak Ties

So how does all this relate to Mark Granovetter’s interview subjects, telling him with such

regularity that their best job leads came from acquaintances rather than close friends? In

fact, triadic closure turns out to be one of the crucial ideas needed to unravel what’s going

on.
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Figure 3.4: The A-B edge is a local bridge of span 4, since the removal of this edge would
increase the distance between A and B to 4.

Bridges and Local Bridges. Let’s start by positing that information about good jobs is

something that is relatively scarce; hearing about a promising job opportunity from someone

suggests that they have access to a source of useful information that you don’t. Now consider

this observation in the context of the simple social network drawn in Figure 3.3. The person

labeled A has four friends in this picture, but one of her friendships is qualitatively different

from the others: A’s links to C, D, and E connect her to a tightly-knit group of friends who

all know each other, while the link to B seems to reach into a different part of the network.

We could speculate, then, that the structural peculiarity of the link to B will translate into

differences in the role it plays in A’s everyday life: while the tightly-knit group of nodes A, C,

D, and E will all tend to be exposed to similar opinions and similar sources of information,

A’s link to B offers her access to things she otherwise wouldn’t necessarily hear about.

To make precise the sense in which the A-B link is unusual, we introduce the following

definition. We say that an edge joining two nodes A and B in a graph is a bridge if deleting

the edge would cause A and B to lie in two different components. In other words, this edge

is literally the only route between its endpoints, the nodes A and B.

Now, if our discussion in Chapter 2 about giant components and small-world properties

taught us anything, it’s that bridges are presumably extremely rare in real social networks.

You may have a friend from a very different background, and it may seem that your friendship

is the only thing that bridges your world and his, but one expects in reality that there will

Un enlace es un puente local si une dos nodos que no tienen
ningun vecino en común (eliminarlo aumenta en tres o más la
distancia entre los nodos).



Enlaces fuertes y débiles

Supongamos que es posible marcar todos los enlaces como
fuertes o débiles.
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Figure 3.5: Each edge of the social network from Figure 3.4 is labeled here as either a strong
tie (S) or a weak tie (W ), to indicate the strength of the relationship. The labeling in the
figure satisfies the Strong Triadic Closure Property at each node: if the node has strong ties
to two neighbors, then these neighbors must have at least a weak tie between them.

be other, hard-to-discover, multi-step paths that also span these worlds. In other words, if

we were to look at Figure 3.3 as it is embedded in a larger, ambient social network, we would

likely see a picture that looks like Figure 3.4.

Here, the A-B edge isn’t the only path that connects its two endpoints; though they may

not realize it, A and B are also connected by a longer path through F , G, and H. This kind

of structure is arguably much more common than a bridge in real social networks, and we

use the following definition to capture it. We say that an edge joining two nodes A and B

in a graph is a local bridge if its endpoints A and B have no friends in common — in other

words, if deleting the edge would increase the distance between A and B to a value strictly

more than two. We say that the span of a local bridge is the distance its endpoints would

be from each other if the edge were deleted [190, 407]. Thus, in Figure 3.4, the A-B edge is

a local bridge with span four; we can also check that no other edge in this graph is a local

bridge, since for every other edge in the graph, the endpoints would still be at distance two if

the edge were deleted. Notice that the definition of a local bridge already makes an implicit

connection with triadic closure, in that the two notions form conceptual opposites: an edge

is a local bridge precisely when it does not form a side of any triangle in the graph.

Local bridges, especially those with reasonably large span, still play roughly the same



Relación entre puentes locales y enlaces débiles

Los puentes reflejan caracteŕısticas globales un grafo. El
concepto de enlaces fuertes o débiles caracteŕısticas locales.

La clave para relacionar estos dos caracteŕısticas de un grafo
es el concepto de clausura triádica.



Clausura triádica

Clausura triádica. Cuando dos personas tiene un amigo en
común pero ellas mismas no lo son, existe una posibilidad alta
de que se vuelvan amigas.

El coeficiente de aglomeración local es una forma de
cuantificar el concepto de clausura triádica.

Bearman y Moody [2004]. Suicide and friendship among
American adolescents. Encuentran que mujeres adolescentes
con menos coeficiente de aglomeración local son más
propensas a suicidarse.



Clausura triádica: fuerte
Decimos que A viola la propiedad de clausura triadica fuerte si
tiene enlaces fuertes con B y C y no existe ningun enace entre
B y C (de ningún tipo). Decimos que A satisface la propiedad
si no la viola.

En la siguiente figura todos los nodos satisfacen la propiedad.52 CHAPTER 3. STRONG AND WEAK TIES
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Clausura triádica: fuerte

Afirmación: Si un nodo en una red satisface la propiedad de
clausura triádica fuerte y tiene por lo menos dos vecinos con
enlaces fuertes entonces en cualquier puente local que este
involucrado, este debe ser un enlace débil.3.2. THE STRENGTH OF WEAK TIES 55
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Strong Triadic Closure says 
the B-C edge must exist, but 
the definition of a local bridge 

says it cannot.

Figure 3.6: If a node satifies Strong Triadic Closure and is involved in at least two strong
ties, then any local bridge it is involved in must be a weak tie. The figure illustrates the
reason why: if the A-B edge is a strong tie, then there must also be an edge between B and
C, meaning that the A-B edge cannot be a local bridge.

We’re going to justify this claim as a mathematical statement – that is, it will follow

logically from the definitions we have so far, without our having to invoke any as-yet-

unformalized intuitions about what social networks ought to look like. In this way, it’s

a different kind of claim from our argument in Chapter 2 that the global friendship network

likely contains a giant component. That was a thought experiment (albeit a very convinc-

ing one), requiring us to believe various empirical statements about the network of human

friendships — empirical statements that could later be confirmed or refuted by collecting

data on large social networks. Here, on the other hand, we’ve constructed a small num-

ber of specific mathematical definitions — particularly, local bridges and the Strong Triadic

Closure Property — and we can now justify the claim directly from these.

The argument is actually very short, and it proceeds by contradiction. Take some net-

work, and consider a node A that satisfies the Strong Triadic Closure Property and is involved

in at least two strong ties. Now suppose A is involved in a local bridge — say, to a node

B — that is a strong tie. We want to argue that this is impossible, and the crux of the

argument is depicted in Figure 3.6. First, since A is involved in at least two strong ties,

and the edge to B is only one of them, it must have a strong tie to some other node, which

we’ll call C. Now let’s ask: is there an edge connecting B and C? Since the edge from A to

B is a local bridge, A and B must have no friends in common, and so the B-C edge must

not exist. But this contradicts Strong Triadic Closure, which says that since the A-B and



Puntes locales y enlaces débiles

El resultado anterior captura la idea de que en redes sociales,
donde probablemente existen muchos nodos que satisfacen la
propiedad de clausura triádica fuerte, los puente locales son
enlaces débiles (conocidos).

Estos conocidos juegan un papel importante acercando
personas con enlaces débiles.
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Métodos de segmentación estándar

El agrupamiento jerárquico va tener dificultades cuando
considere los nodos By D.

Una dificultad similar tendŕıa el agrupamiento basado en
técnicas de asignación de puntos (e.g., K-medias).
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Figure 10.1: Example of a small social network

(
7
2

)
= 21 pairs of nodes that could have had an edge between them. Suppose

X , Y , and Z are nodes of Fig. 10.1, with edges between X and Y and also
between X and Z. What would we expect the probability of an edge between
Y and Z to be? If the graph were large, that probability would be very close
to the fraction of the pairs of nodes that have edges between them, i.e., 9/21
= .429 in this case. However, because the graph is small, there is a noticeable
difference between the true probability and the ratio of the number of edges to
the number of pairs of nodes. Since we already know there are edges (X,Y )
and (X,Z), there are only seven edges remaining. Those seven edges could run
between any of the 19 remaining pairs of nodes. Thus, the probability of an
edge (Y, Z) is 7/19 = .368.

Now, we must compute the probability that the edge (Y, Z) exists in Fig.
10.1, given that edges (X,Y ) and (X,Z) exist. What we shall actually count
is pairs of nodes that could be Y and Z, without worrying about which node
is Y and which is Z. If X is A, then Y and Z must be B and C, in some
order. Since the edge (B,C) exists, A contributes one positive example (where
the edge does exist) and no negative examples (where the edge is absent). The
cases where X is C, E, or G are essentially the same. In each case, X has only
two neighbors, and the edge between the neighbors exists. Thus, we have seen
four positive examples and zero negative examples so far.

Now, considerX = F . F has three neighbors, D, E, and G. There are edges
between two of the three pairs of neighbors, but no edge between G and E.
Thus, we see two more positive examples and we see our first negative example.
If X = B, there are again three neighbors, but only one pair of neighbors,
A and C, has an edge. Thus, we have two more negative examples, and one
positive example, for a total of seven positive and three negative. Finally, when
X = D, there are four neighbors. Of the six pairs of neighbors, only two have
edges between them.

Thus, the total number of positive examples is nine and the total number
of negative examples is seven. We see that in Fig. 10.1, the fraction of times
the third edge exists is thus 9/16 = .563. This fraction is considerably greater
than the .368 expected value for that fraction. We conclude that Fig. 10.1 does
indeed exhibit the locality expected in a social network. ✷
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Betweenness

Definimos la intromisión de un enlace x , como el número de
parejas de nodos {a, b} tal que el enlace x se intromete entre
los caminos más cortos entre a y b. Como pueden existir
varios caminos más cortos entre a y b se le asigna a x solo el
la fracción que pasan por x .
Entre mayor sea este puntaje, más indicativo de que el enlace
separa dos grupos.
En la figura abajo (B,D) tiene un puntaje de 3× 4 = 12, y
(D,F ) tiene un puntaje de 4.
Calcular este puntaje puede ser dif́ıcil en redes grandes.
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Figure 10.1: Example of a small social network

(
7
2

)
= 21 pairs of nodes that could have had an edge between them. Suppose

X , Y , and Z are nodes of Fig. 10.1, with edges between X and Y and also
between X and Z. What would we expect the probability of an edge between
Y and Z to be? If the graph were large, that probability would be very close
to the fraction of the pairs of nodes that have edges between them, i.e., 9/21
= .429 in this case. However, because the graph is small, there is a noticeable
difference between the true probability and the ratio of the number of edges to
the number of pairs of nodes. Since we already know there are edges (X,Y )
and (X,Z), there are only seven edges remaining. Those seven edges could run
between any of the 19 remaining pairs of nodes. Thus, the probability of an
edge (Y, Z) is 7/19 = .368.

Now, we must compute the probability that the edge (Y, Z) exists in Fig.
10.1, given that edges (X,Y ) and (X,Z) exist. What we shall actually count
is pairs of nodes that could be Y and Z, without worrying about which node
is Y and which is Z. If X is A, then Y and Z must be B and C, in some
order. Since the edge (B,C) exists, A contributes one positive example (where
the edge does exist) and no negative examples (where the edge is absent). The
cases where X is C, E, or G are essentially the same. In each case, X has only
two neighbors, and the edge between the neighbors exists. Thus, we have seen
four positive examples and zero negative examples so far.

Now, considerX = F . F has three neighbors, D, E, and G. There are edges
between two of the three pairs of neighbors, but no edge between G and E.
Thus, we see two more positive examples and we see our first negative example.
If X = B, there are again three neighbors, but only one pair of neighbors,
A and C, has an edge. Thus, we have two more negative examples, and one
positive example, for a total of seven positive and three negative. Finally, when
X = D, there are four neighbors. Of the six pairs of neighbors, only two have
edges between them.

Thus, the total number of positive examples is nine and the total number
of negative examples is seven. We see that in Fig. 10.1, the fraction of times
the third edge exists is thus 9/16 = .563. This fraction is considerably greater
than the .368 expected value for that fraction. We conclude that Fig. 10.1 does
indeed exhibit the locality expected in a social network. ✷
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Betweenness: Algoritmo de Girvan-Newman

Paso (1): Representación BFS del ejemplo anterior
comenzando en E .364 CHAPTER 10. MINING SOCIAL-NETWORK GRAPHS
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Figure 10.4: Step 1 of the Girvan-Newman Algorithm

Example 10.6 : Figure 10.4 is a breadth-first presentation of the graph of Fig.
10.3, starting at node E. Solid edges are DAG edges and dashed edges connect
nodes at the same level. ✷

The second step of the GN algorithm is to label each node by the number of
shortest paths that reach it from the root. Start by labeling the root 1. Then,
from the top down, label each node Y by the sum of the labels of its parents.

Example 10.7 : In Fig. 10.4 are the labels for each of the nodes. First, label
the root E with 1. At level 1 are the nodes D and F . Each has only E as a
parent, so they too are labeled 1. Nodes B and G are at level 2. B has only
D as a parent, so B’s label is the same as the label of D, which is 1. However,
G has parents D and F , so its label is the sum of their labels, or 2. Finally, at
level 3, A and C each have only parent B, so their labels are the label of B,
which is 1. ✷

The third and final step is to calculate for each edge e the sum over all nodes
Y of the fraction of shortest paths from the root X to Y that go through e.
This calculation involves computing this sum for both nodes and edges, from
the bottom. Each node other than the root is given a credit of 1, representing
the shortest path to that node. This credit may be divided among nodes and
edges above, since there could be several different shortest paths to the node.
The rules for the calculation are as follows:

1. Each leaf in the DAG (a leaf is a node with no DAG edges to nodes at
levels below) gets a credit of 1.

2. Each node that is not a leaf gets a credit equal to 1 plus the sum of the
credits of the DAG edges from that node to the level below.

Las ĺıneas continuas se llaman DAG y las punteadas
representan nodos en el mismo nivel y no pueden hacer parte
de caminos más cortos comenzando en E .



Betweenness: Algoritmo de Girvan-Newman

Paso (2): Marcar cada nodo con la cantidad de caminos más
cortos que llegan al nodo comenzando en E .364 CHAPTER 10. MINING SOCIAL-NETWORK GRAPHS
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Figure 10.4: Step 1 of the Girvan-Newman Algorithm

Example 10.6 : Figure 10.4 is a breadth-first presentation of the graph of Fig.
10.3, starting at node E. Solid edges are DAG edges and dashed edges connect
nodes at the same level. ✷

The second step of the GN algorithm is to label each node by the number of
shortest paths that reach it from the root. Start by labeling the root 1. Then,
from the top down, label each node Y by the sum of the labels of its parents.

Example 10.7 : In Fig. 10.4 are the labels for each of the nodes. First, label
the root E with 1. At level 1 are the nodes D and F . Each has only E as a
parent, so they too are labeled 1. Nodes B and G are at level 2. B has only
D as a parent, so B’s label is the same as the label of D, which is 1. However,
G has parents D and F , so its label is the sum of their labels, or 2. Finally, at
level 3, A and C each have only parent B, so their labels are the label of B,
which is 1. ✷

The third and final step is to calculate for each edge e the sum over all nodes
Y of the fraction of shortest paths from the root X to Y that go through e.
This calculation involves computing this sum for both nodes and edges, from
the bottom. Each node other than the root is given a credit of 1, representing
the shortest path to that node. This credit may be divided among nodes and
edges above, since there could be several different shortest paths to the node.
The rules for the calculation are as follows:

1. Each leaf in the DAG (a leaf is a node with no DAG edges to nodes at
levels below) gets a credit of 1.

2. Each node that is not a leaf gets a credit equal to 1 plus the sum of the
credits of the DAG edges from that node to the level below.



Betweenness: Algoritmo de Girvan-Newman

Paso (3): Cada enlace va recibir un peso de acuerdo a la
siguientes reglas:

Cada hoja del grafo se le da un crédito de 1 (modificando lo
que tuviera en el paso anterior si es necesario).
Cada nodo que no sea una hoja recibe 1 más el peso de los
enlaces que le suceden.
Los pesos de los enlaces se heredan del peso de los nodos que
los suceden (de forma proporcional).
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Paso (3a): Marcar enlaces BA y BC y nueva marca del nodo
B y G resultado del primer paso de inducción.
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3. A DAG edge e entering node Z from the level above is given a share of the
credit of Z proportional to the fraction of shortest paths from the root to
Z that go through e. Formally, let the parents of Z be Y1, Y2, . . . , Yk. Let
pi be the number of shortest paths from the root to Yi; this number was
computed in Step 2 and is illustrated by the labels in Fig. 10.4. Then the
credit for the edge (Yi, Z) is the credit of Z times pi divided by

∑k
j=1 pj .

After performing the credit calculation with each node as the root, we sum
the credits for each edge. Then, since each shortest path will have been discov-
ered twice – once when each of its endpoints is the root – we must divide the
credit for each edge by 2.

Example 10.8 : Let us perform the credit calculation for the BFS presentation
of Fig. 10.4. We shall start from level 3 and proceed upwards. First, A and C,
being leaves, get credit 1. Each of these nodes have only one parent, so their
credit is given to the edges (B,A) and (B,C), respectively.

E

D F

B G

A C1 1

3 1

1 1

Figure 10.5: Final step of the Girvan-Newman Algorithm – levels 3 and 2

At level 2, G is a leaf, so it gets credit 1. B is not a leaf, so it gets credit
equal to 1 plus the credits on the DAG edges entering it from below. Since
both these edges have credit 1, the credit of B is 3. Intuitively 3 represents the
fact that all shortest paths from E to A, B, and C go through B. Figure 10.5
shows the credits assigned so far.

Now, let us proceed to level 1. B has only one parent, D, so the edge
(D,B) gets the entire credit of B, which is 3. However, G has two parents, D
and F . We therefore need to divide the credit of 1 that G has between the edges
(D,G) and (F,G). In what proportion do we divide? If you examine the labels
of Fig. 10.4, you see that both D and F have label 1, representing the fact that
there is one shortest path from E to each of these nodes. Thus, we give half
the credit of G to each of these edges; i.e., their credit is each 1/(1 + 1) = 0.5.
Had the labels of D and F in Fig. 10.4 been 5 and 3, meaning there were five
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Paso (3b): Marcar siguientes enlaces compartiendo el puntaje
proporcional a el peso de los nodos parientes.
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shortest paths to D and only three to F , then the credit of edge (D,G) would
have been 5/8 and the credit of edge (F,G) would have been 3/8.

E

D F

B G

A C1 1

3 1

1 1

0.50.5

4.5 1.5

3

4.5 1.5

Figure 10.6: Final step of the Girvan-Newman Algorithm – completing the
credit calculation

Now, we can assign credits to the nodes at level 1. D gets 1 plus the credits
of the edges entering it from below, which are 3 and 0.5. That is, the credit of D
is 4.5. The credit of F is 1 plus the credit of the edge (F,G), or 1.5. Finally, the
edges (E,D) and (E,F ) receive the credit of D and F , respectively, since each
of these nodes has only one parent. These credits are all shown in Fig. 10.6.

The credit on each of the edges in Fig. 10.6 is the contribution to the be-
tweenness of that edge due to shortest paths from E. For example, this contri-
bution for the edge (E,D) is 4.5. ✷

To complete the betweenness calculation, we have to repeat this calculation
for every node as the root and sum the contributions. Finally, we must divide
by 2 to get the true betweenness, since every shortest path will be discovered
twice, once for each of its endpoints.

10.2.5 Using Betweenness to Find Communities

The betweenness scores for the edges of a graph behave something like a distance
measure on the nodes of the graph. It is not exactly a distance measure, because
it is not defined for pairs of nodes that are unconnected by an edge, and might
not satisfy the triangle inequality even when defined. However, we can cluster
by taking the edges in order of increasing betweenness and add them to the
graph one at a time. At each step, the connected components of the graph
form some clusters. The higher the betweenness we allow, the more edges we
get, and the larger the clusters become.

More commonly, this idea is expressed as a process of edge removal. Start
with the graph and all its edges; then remove edges with the highest between-

El resultado final es un puntaje para cada enlace dada la ráız
y la representación BFS.

Obsérvese que que cada enlace queda con el puntaje adecuado
de intromisión de todos los caminos más cortos que
comienzan en X .
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Paso (4): Repetir este procedimiento para cada nodo como
ráız y su representación BFS.

Sumar el puntaje de cada enlace que se obtiene en cada
representación.

Dividir por dos dado que cada camino se va descubrir dos
veces, una vez para cada nodo inicial y terminal de un camino
más corto.
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Resultado final de aplicar el algoritmo al ejemplo.
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ness, until the graph has broken into a suitable number of connected compo-
nents.

Example 10.9 : Let us start with our running example, the graph of Fig. 10.1.
We see it with the betweenness for each edge in Fig. 10.7. The calculation of
the betweenness will be left to the reader. The only tricky part of the count
is to observe that between E and G there are two shortest paths, one going
through D and the other through F . Thus, each of the edges (D,E), (E,F ),
(D,G), and (G,F ) are credited with half a shortest path.

A B D E

G F

C

5

12

41

5 4.5

1.5

1.5

4.5

Figure 10.7: Betweenness scores for the graph of Fig. 10.1

Clearly, edge (B,D) has the highest betweenness, so it is removed first.
That leaves us with exactly the communities we observed make the most sense,
namely: {A,B,C} and {D,E, F,G}. However, we can continue to remove
edges. Next to leave are (A,B) and (B,C) with a score of 5, followed by (D,E)
and (D,G) with a score of 4.5. Then, (D,F ), whose score is 4, would leave the
graph. We see in Fig. 10.8 the graph that remains.

A B D E

G F

C

Figure 10.8: All the edges with betweenness 4 or more have been removed

The “communities” of Fig. 10.8 look strange. One implication is that A and
C are more closely knit to each other than to B. That is, in some sense B is a
“traitor” to the community {A,B,C} because he has a friend D outside that
community. Likewise, D can be seen as a “traitor” to the group {D,E, F,G},
which is why in Fig. 10.8, only E, F , and G remain connected. ✷



Betweenness y detección de comunidades

Calcular el puntaje de intromisión de cada enlace y comenzar
a eliminar elaces desde el puntaje más alto hasta obtener una
segmentación adecuada.



Betweenness y detección de comunidades

Comunidades a partir de la eliminación de todos los puntajes
superiores a o iguales a 4.
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edges. Next to leave are (A,B) and (B,C) with a score of 5, followed by (D,E)
and (D,G) with a score of 4.5. Then, (D,F ), whose score is 4, would leave the
graph. We see in Fig. 10.8 the graph that remains.
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The “communities” of Fig. 10.8 look strange. One implication is that A and
C are more closely knit to each other than to B. That is, in some sense B is a
“traitor” to the community {A,B,C} because he has a friend D outside that
community. Likewise, D can be seen as a “traitor” to the group {D,E, F,G},
which is why in Fig. 10.8, only E, F , and G remain connected. ✷
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Comunidades

Los algoritmos descritos hasta el momento particionan los
grafos. No permiten que un nodo pertenezca a varias
comunidades.

La idea del método a continuación es identificar nodos que
tiene mucho enlaces.

Una primera idea es buscar cliques. Sin embargo, encontrar
cliques grandes es un problema muy dif́ıcil
computacionalmente (i.e., NP-Completo).

Resulta que en los grafos bipartitos grandes siempre se puede
encotrar un subgrafo bipartito completo.

Universidad de los Andes y Quantil Mineŕıa de Redes



Comunidades

Estos puden ser utilizado como el punto de partida (i.e.,
núcleo) de la construcción de una comunidad: dado el núcleo
añadir nodos que tiene muchos enlaces con el núcleo.

Si el grafo no es bipartito se puede dividir aleatoriamente los
nodos en dos clases.

A continuación estudiamos como encontrar subgrafos
bipartitos completos.



Subgrafos bipartitos completos

Denotamos por Ks,t un grafo completo de s nodos de una
clase y t nodos de otra.

Sea G un grafo bipartito. El objetivo es econtrar instancias
Ks,t grandes en G .

Esto se puede ver como un problema de encontrar items
frecuentes en canastas de consumo (i.e., análisis de canastas).

Tomemos una de las clases de G como el conjunto de items
(s) y la otra clase como el conjunto de canastas (t). Una
canasta la describe un nodo y los items asociados.
Supongamos que hay menos canastas que items (t ≤ s).



Subgrafos bipartitos completos
Visto como un problema de encotrar canastas la idea es:
buscar t items que estén en s canastas. Esto es una instancia
de Ks,t .

En el siguiente ejemplo hay dos instancias de K2,1.10.3. DIRECT DISCOVERY OF COMMUNITIES 371

4

1 a

b

c

d

2

3

Figure 10.10: The bipartite graph from Fig. 8.1

If s = 2 and t = 1, we must find itemsets of size 1 that appear in at least
two baskets. {1} is one such itemset, and {3} is another. However, in this tiny
example there are no itemsets for larger, more interesting values of s and t,
such as s = t = 2. ✷

10.3.4 Why Complete Bipartite Graphs Must Exist

We must now turn to the matter of demonstrating that any bipartite graph
with a sufficiently high fraction of the edges present will have an instance of
Ks,t. In what follows, assume that the graph G has n nodes on the left and
another n nodes on the right. Assume the two sides have the same number of
nodes simplifies the calculation, but the argument generalizes to sides of any
size. Finally, let d be the average degree of all nodes.

The argument involves counting the number of frequent itemsets of size t
that a basket with d items contributes to. When we sum this number over all
nodes on the right side, we get the total frequency of all the subsets of size t on
the left. When we divide by

(
n
t

)
, we get the average frequency of all itemsets

of size t. At least one must have a frequency that is at least average, so if this
average is at least s, we know an instance of Ks,t exists.

Now, we provide the detailed calculation. Suppose the degree of the ith
node on the right is di; that is, di is the size of the ith basket. Then this
basket contributes to

(
di

t

)
itemsets of size t. The total contribution of the n

nodes on the right is
∑

i

(
di

t

)
. The value of this sum depends on the di’s, of

course. However, we know that the average value of di is d. It is known that
this sum is minimized when each di is d. We shall not prove this point, but a
simple example will suggest the reasoning: since

(
di

t

)
grows roughly as the tth

Se puede demostrar que siempre se pueden encontrar
instancias de Ks,t .
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Betweenness
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Particiones

La idea es particionar los nodos de tal forma que se minimize
los enlaces que conectan estas componentes pero teneiendo en
cuenta el tamaño de cada componente.

Definimos el volúmen de un conjunto de nodos S como el
número de enlaces con al menos un (end) nodo en S .

Sea S ,T dos conjuntos de nodos disyuntos y Cut(S ,T ) el
número de enlaces de S a T .

Definimos el corte normalizado como:

Cut(S ,T )(
1

Vol(S)
+

1

Vol(T )
)

Universidad de los Andes y Quantil Mineŕıa de Redes



Particiones

374 CHAPTER 10. MINING SOCIAL-NETWORK GRAPHS

just joined Facebook, you are not yet connected to any friends. We do not
want to partition the friends graph with you in one group and the rest of the
world in the other group, even though that would partition the graph without
there being any edges that connect members of the two groups. This cut is not
desirable because the two components are too unequal in size.

10.4.1 What Makes a Good Partition?

Given a graph, we would like to divide the nodes into two sets so that the cut, or
set of edges that connect nodes in different sets is minimized. However, we also
want to constrain the selection of the cut so that the two sets are approximately
equal in size. The next example illustrates the point.

Example 10.14 : Recall our running example of the graph in Fig. 10.1. There,
it is evident that the best partition puts {A,B,C} in one set and {D,E, F,G}
in the other. The cut consists only of the edge (B,D) and is of size 1. No
nontrivial cut can be smaller.

A B D E

G F

C

H

Smallest Best cut

cut

Figure 10.11: The smallest cut might not be the best cut

In Fig. 10.11 is a variant of our example, where we have added the node
H and two extra edges, (H,C) and (C,G). If all we wanted was to minimize
the size of the cut, then the best choice would be to put H in one set and all
the other nodes in the other set. But it should be apparent that if we reject
partitions where one set is too small, then the best we can do is to use the
cut consisting of edges (B,D) and (C,G), which partitions the graph into two
equal-sized sets {A,B,C,H} and {D,E, F,G}. ✷

10.4.2 Normalized Cuts

A proper definition of a “good” cut must balance the size of the cut itself
against the difference in the sizes of the sets that the cut creates. One choice

En esta red, el corte normalizado de la izquierda es:
1
1 + 1

11 = 1,09 y el de la derecha es: 2
6 + 2

7 = 0,62.



Laplaciano

Definimos el Laplaciano L de una red como: L = D −A, donde
A es la matriz de adjacencia (con ceros en la diagonal) y D es
la matriz diagonal con el grado de cada nodo en la diagonal.

Ejemplo:
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A B D E

G F

C

Figure 10.1: Example of a small social network

(
7
2

)
= 21 pairs of nodes that could have had an edge between them. Suppose

X , Y , and Z are nodes of Fig. 10.1, with edges between X and Y and also
between X and Z. What would we expect the probability of an edge between
Y and Z to be? If the graph were large, that probability would be very close
to the fraction of the pairs of nodes that have edges between them, i.e., 9/21
= .429 in this case. However, because the graph is small, there is a noticeable
difference between the true probability and the ratio of the number of edges to
the number of pairs of nodes. Since we already know there are edges (X,Y )
and (X,Z), there are only seven edges remaining. Those seven edges could run
between any of the 19 remaining pairs of nodes. Thus, the probability of an
edge (Y, Z) is 7/19 = .368.

Now, we must compute the probability that the edge (Y, Z) exists in Fig.
10.1, given that edges (X,Y ) and (X,Z) exist. What we shall actually count
is pairs of nodes that could be Y and Z, without worrying about which node
is Y and which is Z. If X is A, then Y and Z must be B and C, in some
order. Since the edge (B,C) exists, A contributes one positive example (where
the edge does exist) and no negative examples (where the edge is absent). The
cases where X is C, E, or G are essentially the same. In each case, X has only
two neighbors, and the edge between the neighbors exists. Thus, we have seen
four positive examples and zero negative examples so far.

Now, considerX = F . F has three neighbors, D, E, and G. There are edges
between two of the three pairs of neighbors, but no edge between G and E.
Thus, we see two more positive examples and we see our first negative example.
If X = B, there are again three neighbors, but only one pair of neighbors,
A and C, has an edge. Thus, we have two more negative examples, and one
positive example, for a total of seven positive and three negative. Finally, when
X = D, there are four neighbors. Of the six pairs of neighbors, only two have
edges between them.

Thus, the total number of positive examples is nine and the total number
of negative examples is seven. We see that in Fig. 10.1, the fraction of times
the third edge exists is thus 9/16 = .563. This fraction is considerably greater
than the .368 expected value for that fraction. We conclude that Fig. 10.1 does
indeed exhibit the locality expected in a social network. ✷



Laplaciano: Valores propios

Los valores y vectores propios del Laplaciano contienen
información global de un grafo.

El menor valor propio del Laplaciano es cero (con vector
propio el vector de unos).

Ahora obsérvese que xTLx =
∑

{i ,j}:Aij=1(xi − xj)
2 y

consideremos el problema:

ḿın
∥x∥2=1,x⊥1

xTLxT (1)

Se puede demostrar que la solución a este problema es igual al
segundo menor valor propio de L y, el x que resuelve el
problema, el vector propio asociado.



Laplaciano: Valores propios

Es fácil de ver que no todas las componentes de x pueden ser
cero, algunas deben ser positivas y otras negativas y la
tendencia es a que tengan el mismo signo si existe un enlace
entre los nodos.

Esto motiva el siguiente método para particionar un grafo.
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Ejemplo:
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evaluate the term with D and then the term for A. Here, Dx is the column vec-
tor [d1x1, d2x2, . . . , dnxn], where di is the degree of the ith node of the graph.
Thus, xTDx is

∑n
i=1 dix

2
i .

Now, turn to xTAx. The ith component of the column vector Ax is the sum
of xj over all j such that there is an edge (i, j) in the graph. Thus, −xTAx is the
sum of −2xixj over all pairs of nodes {i, j} such that there is an edge between
them. Note that the factor 2 appears because each set {i, j} corresponds to two
terms, −xixj and −xjxi.

We can group the terms of xTLx in a way that distributes the terms to each
pair {i, j}. From −xTAx, we already have the term −2xixj . From xTDx, we
distribute the term dix

2
i to the di pairs that include node i. As a result, we

can associate with each pair {i, j} that has an edge between nodes i and j the
terms x2

i −2xixj+x2
j . This expression is equivalent to (xi−xj)

2. Therefore, we

have proved that xTLx equals the sum over all graph edges (i, j) of (xi − xj)
2.

Recall that the second-smallest eigenvalue is the minimum of this expression
under the constraint that

∑n
i=1 x

2
i = 1. Intuitively, we minimize it by making

xi and xj close whenever there is an edge between nodes i and j in the graph.
We might imagine that we could choose xi = 1/

√
n for all i and thus make this

sum 0. However, recall that we are constrained to choose x to be orthogonal to
1, which means the sum of the xi’s is 0. We are also forced to make

∑n
i=1 x

2
i be

1, so all components cannot be 0. As a consequence, x must have some positive
and some negative components.

We can obtain a partition of the graph by taking one set to be the nodes
i whose corresponding vector component xi is positive and the other set to
be those whose components are negative. This choice does not guarantee a
partition into sets of equal size, but the sizes are likely to be close. We believe
that the cut between the two sets will have a small number of edges because
(xi−xj)

2 is likely to be smaller if both xi and xj have the same sign than if they
have different signs. Thus, minimizing xTLx under the required constraints will
tend to give xi and xj the same sign if there is an edge (i, j).

2

3 6

5

41

Figure 10.16: Graph for illustrating partitioning by spectral analysis

Example 10.19 : Let us apply the above technique to the graph of Fig. 10.16.
The Laplacian matrix for this graph is shown in Fig. 10.17. By standard meth-
ods or math packages we can find all the eigenvalues and eigenvectors of this
matrix. We shall simply tabulate them in Fig. 10.18, from lowest eigenvalue to
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highest. Note that we have not scaled the eigenvectors to have length 1, but
could do so easily if we wished.




3 -1 -1 -1 0 0
-1 2 -1 0 0 0
-1 -1 3 0 0 -1
-1 0 0 3 -1 -1
0 0 0 -1 2 -1
0 0 -1 -1 -1 3




Figure 10.17: The Laplacian matrix for Fig. 10.16

The second eigenvector has three positive and three negative components.
It makes the unsurprising suggestion that one group should be {1, 2, 3}, the
nodes with positive components, and the other group should be {4, 5, 6}. ✷

Eigenvalue 0 1 3 3 4 5
Eigenvector 1 1 −5 −1 −1 −1

1 2 4 −2 1 0
1 1 1 3 −1 1
1 −1 −5 −1 1 1
1 −2 4 −2 −1 0
1 −1 1 3 1 −1

Figure 10.18: Eigenvalues and eigenvectors for the matrix of Fig. 10.17

10.4.5 Alternative Partitioning Methods

The method of Section 10.4.4 gives us a good partition of the graph into two
pieces that have a small cut between them. There are several ways we can use
the same eigenvectors to suggest other good choices of partition. First, we are
not constrained to put all the nodes with positive components in the eigenvector
into one group and those with negative components in the other. We could set
the threshold at some point other than zero.

For instance, suppose we modified Example 10.19 so that the threshold was
not zero, but −1.5. Then the two nodes 4 and 6, with components −1 in the
second eigenvector of Fig. 10.18, would join 1, 2, and 3, leaving five nodes in one
component and only node 5 in the other. That partition would have a cut of size
two, as did the choice based on the threshold of zero, but the two components
have radically different sizes, so we would tend to prefer our original choice.
However, there are other cases where the threshold zero gives unequally sized
components, as would be the case if we used the third eigenvector in Fig. 10.18.
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nodes with positive components, and the other group should be {4, 5, 6}. ✷

Eigenvalue 0 1 3 3 4 5
Eigenvector 1 1 −5 −1 −1 −1

1 2 4 −2 1 0
1 1 1 3 −1 1
1 −1 −5 −1 1 1
1 −2 4 −2 −1 0
1 −1 1 3 1 −1

Figure 10.18: Eigenvalues and eigenvectors for the matrix of Fig. 10.17

10.4.5 Alternative Partitioning Methods

The method of Section 10.4.4 gives us a good partition of the graph into two
pieces that have a small cut between them. There are several ways we can use
the same eigenvectors to suggest other good choices of partition. First, we are
not constrained to put all the nodes with positive components in the eigenvector
into one group and those with negative components in the other. We could set
the threshold at some point other than zero.

For instance, suppose we modified Example 10.19 so that the threshold was
not zero, but −1.5. Then the two nodes 4 and 6, with components −1 in the
second eigenvector of Fig. 10.18, would join 1, 2, and 3, leaving five nodes in one
component and only node 5 in the other. That partition would have a cut of size
two, as did the choice based on the threshold of zero, but the two components
have radically different sizes, so we would tend to prefer our original choice.
However, there are other cases where the threshold zero gives unequally sized
components, as would be the case if we used the third eigenvector in Fig. 10.18.
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Caminata aleatoria con reinicio

El objetivo es estimar qué tan similares son los nodos dentro
de una misma categoŕıa a un nodo espećıfico.

No es posible medir la similaridad entre dos nodos
simplemente navegando de forma aleatoria en un grafo pues la
distribucion final es independiente del punto de partida
(estado estacionario de PageRank).

Dado un nodo de interes, la idea consiste en usar el algoritmo
de Pagerank pero con una probabiliad positiva de
teletransportarse concentrada en el nodo de interes.

El resultado arroja una medida de similitud de cada nodo al
nodo de interes. Esto calculo hay que hacerlo para cada nodo.
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