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Ejemplo: Helados y Crimen

Considere la representación gráfica:
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54 Causal Inference in Statistics

University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.

The difference between intervening on a variable and conditioning on that variable should,
hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.
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Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained
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Z
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Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales

Este gráfico refleja la relación probabiĺıstica entre las variables
aleatoria.

Condicionar a una variable es observar las demás solo cuando
esa esta fija en cierto valor. No cambia el gráfico (i.e. cambiar
la perspectiva para observar el mundo).

Universidad de los Andes y Quantil Fundamentos Causalidad
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University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.

The difference between intervening on a variable and conditioning on that variable should,
hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.
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Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained
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Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales

Intervenir X consiste en fijar su valor independiente de todo lo
que pueda afectarla. Cambia el gráfico (cambia el mundo).

De este nuevo gráfico se deduce que intervenir X no tiene
ningún efecto sobre Y .



Condicionar vs. Intervenir

Condicionar es restringirse al estudio de los ejemplos o la
parte de la población que tiene ciertas caracteŕısticas.

Intervenir es cambiar un valor de alguna variable para todo los
ejemplos o población (i.e., una manipulación de la
dependencia entre las variables).

Para representar una condicional y diferenciarla de una
intervención usamos la siguiente notación: P(Y | X = x) y
P(Y | do(X = x)).

Suponemos que P(Y | do(X = x)) = Pm(Y | X = x) donde
Pm es la distribución de probababilidad del modelo gráfico
manipulado.

En muchas ocasiones (cuando X es binaria) estamos
interesados en el efecto casual promedio:

P(Y = y | do(X = 1))− P(Y = y | do(X = 0)) (1)



Cálculo de Efectos Causales

Consideremos el caso de la Paradoja de Simpson (i.e., primera
versión).
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The Effects of Interventions 55

directly from the data set, using the procedures described in Part One, while the former varies
depending on the structure of the causal graph. It is the graph that instructs us which arrow
should be removed for any given intervention.

In notation, we distinguish between cases where a variable X takes a value x naturally and
cases where we fix X = x by denoting the latter do(X = x). So P(Y = y|X = x) is the probabil-
ity that Y = y conditional on finding X = x, while P(Y = y|do(X = x)) is the probability that
Y = y when we intervene to make X = x. In the distributional terminology, P(Y = y|X = x)
reflects the population distribution of Y among individuals whose X value is x. On the other
hand, P(Y = y|do(X = x)) represents the population distribution of Y if everyone in the popu-
lation had their X value fixed at x. We similarly write P(Y = y|do(X = x), Z = z) to denote the
conditional probability of Y = y, given Z = z, in the distribution created by the intervention
do(X = x).

Using do-expressions and graph surgery, we can begin to untangle the causal relationships
from the correlative. In the rest of this chapter, we learn methods that can, astoundingly, tease
out causal information from purely observational data, assuming of course that the graph con-
stitutes a valid representation of reality. It is worth noting here that we are making a tacit
assumption here that the intervention has no “side effects,” that is, that assigning the value x
for the valuable X for an individual does not alter subsequent variables in a direct way. For
example, being “assigned” a drug might have a different effect on recovery than being forced
to take the drug against one’s religious objections. When side effects are present, they need to
be specified explicitly in the model.

3.2 The Adjustment Formula

The ice cream example represents an extreme case in which the correlation between X and
Y was totally spurious from a causal perspective, because there was no causal path from X
to Y . Most real-life situations are not so clear-cut. To explore a more realistic situation, let us
examine Figure 3.3, in which Y responds to both Z and X. Such a model could represent, for
example, the first story we encountered for Simpson’s paradox, where X stands for drug usage,
Y stands for recovery, and Z stands for gender. To find out how effective the drug is in the pop-
ulation, we imagine a hypothetical intervention by which we administer the drug uniformly
to the entire population and compare the recovery rate to what would obtain under the com-
plementary intervention, where we prevent everyone from using the drug. Denoting the first
intervention by do(X = 1) and the second by do(X = 0), our task is to estimate the difference

P(Y = 1|do(X = 1)) − P(Y = 1|do(X = 0)) (3.1)

YX

Z

UZ

UX UY

Figure 3.3 A graphical model representing the effects of a new drug, with Z representing gender, X
standing for drug usage, and Y standing for recovery

Si intervenimos X = x se obtiene el nuevo diagrama.



Cálculo de Efectos Causales

Intervención X = x .
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56 Causal Inference in Statistics

which is known as the “causal effect difference,” or “average causal effect” (ACE). In general,
however, if X and Y can each take on more than one value, we would wish to predict the
general causal effect P(Y = y|do(X = x)), where x and y are any two values that X and Y can
take on. For example, x may be the dosage of the drug and y the patient’s blood pressure.

We know from first principles that causal effects cannot be estimated from the data set
itself without a causal story. That was the lesson of Simpson’s paradox: The data itself was
not sufficient even for determining whether the effect of the drug was positive or negative. But
with the aid of the graph in Figure 3.3, we can compute the magnitude of the causal effect from
the data. To do so, we simulate the intervention in the form of a graph surgery (Figure 3.4)
just as we did in the ice cream example. The causal effect P(Y = y|do(X = x)) is equal to the
conditional probability Pm(Y = y|X = x) that prevails in the manipulated model of Figure 3.4.
(This, of course, also resolves the question of whether the correct answer lies in the aggregated
or the Z-specific table—when we determine the answer through an intervention, there’s only
one table to contend with.)

YX = x

Z
x

UZ

UY

Figure 3.4 A modified graphical model representing an intervention on the model in Figure 3.3 that
sets drug usage in the population, and results in the manipulated probability Pm

The key to computing the causal effect lies in the observation that Pm, the manipulated
probability, shares two essential properties with P (the original probability function that pre-
vails in the preintervention model of Figure 3.3). First, the marginal probability P(Z = z) is
invariant under the intervention, because the process determining Z is not affected by remov-
ing the arrow from Z to X. In our example, this means that the proportions of males and
females remain the same, before and after the intervention. Second, the conditional proba-
bility P(Y = y|Z = z,X = x) is invariant, because the process by which Y responds to X and
Z,Y = f (x, z, uY), remains the same, regardless of whether X changes spontaneously or by
deliberate manipulation. We can therefore write two equations of invariance:

Pm(Y = y|Z = z,X = x) = P(Y = y|Z = z,X = x) and Pm(Z = z) = P(Z = z)

We can also use the fact that Z and X are d-separated in the modified model and are, there-
fore, independent under the intervention distribution. This tells us that Pm(Z = z|X = x) =
Pm(Z = z) = P(Z = z), the last equality following from above. Putting these considerations
together, we have

P(Y = y|do(X = x)

= Pm(Y = y|X = x) (by definition) (3.2)

Si suponemos que no existen efectos secundarios de la
intervención sobre otras variables,
Pm(Y = y | Z = z ,X = x) = P(Y = y | Z = z ,X = x) y
Pm(Z = z) = P(Z = z) entonces podemos calcular el efecto
causal P(Y = y | do(X = x)).



Cálculo de Efectos Causales

P(Y = y | do(X = x)) = Pm(Y = y | X = x) por definición.

Pm(Y = y | X = x) = (2)∑
z

Pm(Y = y | X = x ,Z = z)Pm(Z = z | X = x) (3)

=
∑
z

Pm(Y = y | X = x ,Z = z)Pm(Z = z) (4)

=
∑
z

P(Y = y | X = x ,Z = z)P(Z = z) (5)

Esto se conoce como el ajuste por Z .



Cálculo de Efectos Causales

Example (Paradoja de Simpson I)

Sea X = 1 tomar la droga, Y = 1 recuperarse y Z = 1 ser hombre.
Utiliando la tabla de frecuencias observadas:

P(Y = 1 | do(X = 1)) = 0,832 (6)

P(Y = 1 | do(X = 0)) = 0,7818 (7)

Luego P(Y = 1 | do(X = 1))− P(Y = 1 | do(X = 0)) = 0,0502.
Esto lo podemos intepretar como la diferencia en la fracción de las
personas que se recuperan si todos toman la droga menos la
fracción de los que se recuperan si nadie toma la droga.

Obsérvese que de haberse conducido un experimento aleatorio
controlado para conocer el efecto de la droga, el diagrama
resultante seŕıa como el diagrama intervenido.



Cálculo de Efectos Causales

Example (Paradoja de Simpson II)

En este caso una intervención no cambia el grafo (i.e., el grafo
tendŕıa la misma forma que si se hubiera hecho un experimento
aleatorio controlado).
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population data P(Y = 1|X = 1) and P(Y = 1|X = 0), from which we might (falsely) conclude
that the drug has a negative effect overall.

These simple examples might give readers the impression that whenever we face the
dilemma of whether to condition on a third variable Z, the adjustment formula prefers the
Z-specific analysis over the nonspecific analysis. But we know this is not so, recalling
the blood pressure example of Simpson’s paradox given in Table 1.2. There we argued that
the more sensible method would be not to condition on blood pressure, but to examine the
unconditional population table directly. How would the adjustment formula cope with
situations like that?

Z

X Y

Figure 3.5 A graphical model representing the effects of a new drug, with X representing drug usage, Y
representing recovery, and Z representing blood pressure (measured at the end of the study). Exogenous
variables are not shown in the graph, implying that they are mutually independent

The graph in Figure 3.5 represents the causal story in the blood pressure example. It is the
same as Figure 3.4, but with the arrow between X and Z reversed, reflecting the fact that the
treatment has an effect on blood pressure and not the other way around. Let us try now to
evaluate the causal effect P(Y = 1|do(X = 1)) associated with this model as we did with the
gender example. First, we simulate an intervention and then examine the adjustment formula
that emanates from the simulated intervention. In graphical models, an intervention is simu-
lated by severing all arrows that enter the manipulated variable X. In our case, however, the
graph of Figure 3.5 shows no arrow entering X, since X has no parents. This means that no
surgery is required; the conditions under which data were obtained were such that treatment
was assigned “as if randomized.” If there was a factor that would make subjects prefer or reject
treatment, such a factor should show up in the model; the absence of such a factor gives us the
license to treat X as a randomized treatment.

Under such conditions, the intervention graph is equal to the original graph—no arrow need
be removed—and the adjustment formula reduces to

P(Y = y|do(X = x)) = P(Y = y|X = x),

which can be obtained from our adjustment formula by letting the empty set be the element
adjusted for. Obviously, if we were to adjust for blood pressure, we would obtain an incorrect
assessment—one corresponding to a model in which blood pressure causes people to seek
treatment.

3.2.1 To Adjust or not to Adjust?

We are now in a position to understand what variable, or set of variables, Z can legitimately be
included in the adjustment formula. The intervention procedure, which led to the adjustment
formula, dictates that Z should coincide with the parents of X, because it is the influence of

Como el grafo no cambia: P(Y = y | do(X = x)) = Pm(Y = y |
X = x) = P(Y = y | X = x), lo cual explica que se use las
frecuencias codicionales (el efecto agregado observado).



Regla de Efectos Causales

Sea G un grafo y PAX los parientes de la variable X . Entonces
el efecto causal de X en Y es:

P(Y = y | do(X = x)) = (8)∑
z

P(Y = y | X = x ,PAX = z)P(PAX = z) (9)

Alternativamente:

P(Y = y | do(X = x)) = (10)∑
z

P(Y = y ,X = x ,PAX = z)

P(X = x | PAX = z)
(11)

P(X = x | PAX = z) se conoce como el propensity score.

En resumen, el modelo grafico permite identificar los parientes
de X que bajo condiciones no experimentales permitiŕıan
identificar el valor de X o su distribución de probabilidad.
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Causalidad en Modelos de Aprendizaje de Máquinas

Representación Potencialmente Insuficiente: Variables
Ocultas

Cuándo la estructura de un grafo es suficiente para determinar
un efecto causal solo de los datos observados?

Criterio de la Puerta Trasera: G un grafo (dirigido aćıclico).
Decimos que un conjunto de variables Z satisface el criterio
de la puerta trasera relativo a las variables X ,Y si:

1 Ningun nodo Z es un descendiente de X .
2 Z bloquea cualquier camino entre X y Y que tenga un enlace

que apunta hacia X .

En ese caso el efecto causal se calcula como:

P(Y = y | do(X = x)) =
∑
z

P(Y = y | X = x ,Z = z)P(Z = z)

(12)

Universidad de los Andes y Quantil Fundamentos Causalidad



Representación Potencalmente Insuficiente: Variables
Ocultas

Obsérvese que PAX siempre satisface el criterio de la puerta
trasera relativo a X y Y .



Backdoor Criterion Intuitivamente

1 No hay relaciones espureas entre X y Y .

2 Se mantiene todos los caminos dirigidos entre X y Y sin
modificación.

3 No se crean nuevos caminos espurios.



Backdoor Criterion: Ejemplo
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When trying to find the causal effect of X on Y , we want the nodes we condition on to block
any “backdoor” path in which one end has an arrow into X, because such paths may make
X and Y dependent, but are obviously not transmitting causal influences from X, and if we do
not block them, they will confound the effect that X has on Y . We condition on backdoor paths
so as to fulfill our first requirement. However, we don’t want to condition on any nodes that
are descendants of X. Descendants of X would be affected by an intervention on X and might
themselves affect Y; conditioning on them would block those pathways. Therefore, we don’t
condition on descendants of X so as to fulfill our second requirement. Finally, to comply with
the third requirement, we should refrain from conditioning on any collider that would unblock
a new path between X and Y . The requirement of excluding descendants of X also protects us
from conditioning on children of intermediate nodes between X and Y (e.g., the collision node
W in Figure 2.4.) Such conditioning would distort the passage of causal association between
X and Y , similar to the way conditioning on their parents would.

To see what this means in practice, let’s look at a concrete example, shown in Figure 3.6.

Z
W

X Y

Figure 3.6 A graphical model representing the relationship between a new drug (X), recovery (Y),
weight (W), and an unmeasured variable Z (socioeconomic status)

Here we are trying to gauge the effect of a drug (X) on recovery (Y). We have also measured
weight (W), which has an effect on recovery. Further, we know that socioeconomic status (Z)
affects both weight and the choice to receive treatment—but the study we are consulting did
not record socioeconomic status.

Instead, we search for an observed variable that fits the backdoor criterion from X to Y .
A brief examination of the graph shows that W, which is not a descendant of X, also blocks
the backdoor path X ← Z → W → Y . Therefore, W meets the backdoor criterion. So long as
the causal story conforms to the graph in Figure 3.6, adjusting for W will give us the causal
effect of X on Y . Using the adjustment formula, we find

P(Y = y|do(X = x)) =
∑

w

P(Y = y|X = x,W = w)P(W = w)

This sum can be estimated from our observational data, so long as W is observed.
With the help of the backdoor criterion, you can easily and algorithmically come to a con-

clusion about a pressing policy concern, even in complicated graphs. Consider the model in
Figure 2.8, and assume again that we wish to evaluate the effect of X on Y . What variables
should we condition on to obtain the correct effect? The question boils down to finding a set
of variables that satisfy the backdoor criterion, but since there are no backdoor paths from X
to Y , the answer is trivial: The empty set satisfies the criterion, hence no adjustment is needed.
The answer is

P(y|do(x)) = P(y|x)
Suppose, however, that we were to adjust for W. Would we get the correct result for the

effect of X on Y? Since W is a collider, conditioning on W would open the path X → W ← Z ↔

La estrategia es buscar una variable(s) que satisfaga el criterio
de BC relativo a X ,Y .

W no es un descendiente de X y bloque el camino (backdoor
path) X ← Z →W → Y .

Luego, si el modelo es una descripcón correcta de las
relaciones aun si Z no se observa se puede calcular el efecto
causal de X en Y ajustando por W .



Efectos Causales de Intervenciones
Criterio de la Puerta Trasera (Backdoor Criterion)

Causalidad en Modelos de Aprendizaje de Máquinas
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Universidad de los Andes y Quantil Fundamentos Causalidad



Efectos Causales de Intervenciones
Criterio de la Puerta Trasera (Backdoor Criterion)

Causalidad en Modelos de Aprendizaje de Máquinas

Importancia de Variables

Existen muchas formas de estudiar el papel de las variables
explicativas en modelos de aprendizaje de máquinas.

Estas dependen del objetio del análisis. Cuando el énfasis es
en predicción existen varios conceptos de importacia de las
variables: Análisis de varianza, importancia de variables (i.e.,
árboles), efectos marginales, esperanza condicional,
dependencia parcial, etc.

Universidad de los Andes y Quantil Fundamentos Causalidad



Importancia de Variables

Cuando el objetivo es analizar el efecto causal el problema es
más dif́ıcil y para esto hemos estudiado toda esta
formalización en grafos del concepto de causalidad.

Vamos a mostrar que una forma de estimar la importancia de
variables en modelos arbirarios (cajas negras) de aprendizaje
de máquinas, los gráficos de dependencia parcial de Friedman,
pueden tambien bajo ciertas circunstancias utilizarse para
estimar efectos causales.



Gráficos de Dependencia Parcial

Sea XS y Z = XC un conjunto de variables y su complemento
respectivamente. Sea h una función de aprendizaje:
Y = h(XS ,Z ). Definimos la dependencia parcial hXS

(xS), de
Y en XS en el punto xS como:

EZ [h(xS ,Z )] =

∫
h(xS ,Z )dF (z)

Obsérvese que aqúı se está integrando sobre la distribución
marginal de Z .

Esto es diferente a la esperanza condicional:
E [h(XS ,Z ) | XS = x ], en donde se integra con respecto a la
distribuón condicional de Z a X = x .

Un estimador de la dependencia parcial es:

EZ [h(xS ,Z )] =
1

n

n∑
i=1

h(xS , zi ) (13)



Gráficos de Dependencia Parcial

PDP permite estimar la relación de causalidad de XS en Y
controlando por Z .

Para ver esto recordemos la ecuación de ajuste:

F (y | do(XS = xS)) =

∫
F (y | XS = xS ,Z = z)dF (z)

Si calculamos el valor esperado en ambos lados de la variable
aleatoria F (Y | do(XS = xS)):

E [Y | do(XS = xS)] =

∫
E [Y | XS = xS ,Z = z ]dF (z) (14)

Obsérvese que la función de aprendizaje óptimo para
problemas de regresión es: h(xS , z) = E [Y | XS = xS ,Z = z ]



Gráficos de Dependencia Parcial y Causalidad

Si Z satisface la propiedad de la puerta trasera con respecto a
XS ,Y , entonces la dependencia parcial Y en XS estima el
efecto causal de XS en Y .

CAUSAL INTERPRETATIONS OF BLACK-BOX MODELS 11
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(a) Scatter plot and partial dependence plots using different
black-box algorithms.
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(b) ICE plot. The thick curve in the middle
is the average of all the individual curves, i.e.
the PDP.

Figure 4. Auto MPG data: impact of acceleration (in number of seconds to
run 400 meters) on MPG. The PDPs show that the causal effect of acceleration
is smaller than what the scatter plot may suggest. The ICE plot shows that
there are some interactions between acceleration and other variables.
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