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Estad́ıstica y Modelos Causales

Muchas preguntas que frecuentemente nos hacemos de un
conjunto de datos: cómo (el mecanismo que causa un evento)
y por qué (que sucedio que causo un evento), no es posible
responderlas en el marco estad́ıstico tradicional.

Es necesario un marco conceptual adicional, una teoŕıa de
causalidad.
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Estad́ıstica y Modelos Causales

Edward Simpson (1922): Una relación estad́ıstica que se
cumple para toda la población puede reversarse en cada
subpoblación.

Por ejemplo: en una población de estudiantes se podŕıa
encontrar que en promedio los fumadores tienen mejores
notas. Sin embargo, entre cada grupo de edad los fumadores
tienen peores notas y, entre cada grupo de edad y sexo los
fumadores tiene mejores notas y asi puede reversarse la
asociación anterior en cada subpoblación.



Paradoja de Simpson: Ejemplo

Example

Se les ofrece tomar de forma voluntaria una droga a 700 pacientes.
350 pacientes la toman y los demás no.
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2 Causal Inference in Statistics

smoke get higher grades, on average, than nonsmokers get. But when we take into account
the students’ age, we might find that, in every age group, smokers get lower grades than
nonsmokers get. Then, if we take into account both age and income, we might discover that
smokers once again get higher grades than nonsmokers of the same age and income. The
reversals may continue indefinitely, switching back and forth as we consider more and more
attributes. In this context, we want to decide whether smoking causes grade increases and in
which direction and by how much, yet it seems hopeless to obtain the answers from the data.

In the classical example used by Simpson (1951), a group of sick patients are given the
option to try a new drug. Among those who took the drug, a lower percentage recovered than
among those who did not. However, when we partition by gender, we see that more men taking
the drug recover than do men are not taking the drug, and more women taking the drug recover
than do women are not taking the drug! In other words, the drug appears to help men and
women, but hurt the general population. It seems nonsensical, or even impossible—which is
why, of course, it is considered a paradox. Some people find it hard to believe that numbers
could even be combined in such a way. To make it believable, then, consider the following
example:

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the
drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the
study are shown in Table 1.1.

The first row shows the outcome for male patients; the second row shows the outcome for
female patients; and the third row shows the outcome for all patients, regardless of gender.
In male patients, drug takers had a better recovery rate than those who went without the drug
(93% vs 87%). In female patients, again, those who took the drug had a better recovery rate
than nontakers (73% vs 69%). However, in the combined population, those who did not take
the drug had a better recovery rate than those who did (83% vs 78%).

The data seem to say that if we know the patient’s gender—male or female—we can pre-
scribe the drug, but if the gender is unknown we should not! Obviously, that conclusion is
ridiculous. If the drug helps men and women, it must help anyone; our lack of knowledge of
the patient’s gender cannot make the drug harmful.

Given the results of this study, then, should a doctor prescribe the drug for a woman? A
man? A patient of unknown gender? Or consider a policy maker who is evaluating the drug’s
overall effectiveness on the population. Should he/she use the recovery rate for the general
population? Or should he/she use the recovery rates for the gendered subpopulations?

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No drug

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Debemos o no recomendar la droga?
Los datos sugieren que si conocemos el sexo de las personas,
debemos recomendar tomar la droga. Pero si no lo conocemos,
no!
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Paradoja de Simpson: Ejemplo

En esta ejemplo tenemos 343 mujeres y 357 hombres.

Es imposible racionalizar este fenómeno sin apelar a alguna
teoŕıa (i.e., hipótesis):
Suponga que el estrógeno reduce la efectividad de la droga.
Sin embargo, supongamos que esta es efectiva tanto en
hombres como mujeres.



Paradoja de Simpson: Ejemplo

Para evaluar el efecto de la droga sobre la población
quisieramos eveluar que sucede con la población si todos
toman la droga y compararla contra el resultado en el que
nadie en la población toma la droga,

Evidentemente esto no es lo que observamos en el
experimento.

Podŕıamos estimar ingenuamente el efecto si elegimos
aleatoriamente una persona que tomo la droga y la
comparamos contra una persona elegida aleatoriamente que
no tomo la droga y repetimos varias veces esto y
promediamos.

Como es más probable elegir una mujer en el primer caso (i.e.,
son más mujeres las que toman la droga) y un hombre en el
segundo caso, parece a nivel poblacional que la droga no
funciona.

Sin embargo esta forma de estimar el efecto poblaciónal esta
fundamentalmente errada.



Paradoja de Simpson: Formalmente

Formalmente queremos estimar (i.e., Teoŕıa de resultados
potenciales):

E (Yt)− E (Yc) (1)

donde Yt es el resultado sobre las personas de ser tratado y
Yc es el resultado sobre las personas si no son tratadas.
El valor esperado es sobre toda la población pero no se
puede observar una persona simultáneamente tratada y
no tratada.
Lo que observamos es (S ,YS) donde S es una función
indicadora de si la persona fue tratada o no. Luego
observamos E (Y | S).
Pero en general E (Yt) 6= E (Yt | S = t) y
E (Yc) 6= E (Yc | S = c). En nuestro caso, ser mujer y ser
tratado no son independientes.
Entonces:

E (Yt)− E (Yc) 6= (2)

E (Yt | S = t)− E (Yc | S = c) (3)



Hipótesis de Independencia

Como mencionamos anteriormente E (Yt) 6= E (Yt | S = t) y
E (Yc) 6= E (Yc | S = c).
Hay por lo menos tres formas de resolver este problema:

1 Estabilidad temporal y transitoriedad: el resultado de Yc(u),
primero aplicar c a u y después observar el resultado Yc(u) no
depende del momento en el que se haga y Yt(u) no depende
de que anteriormente se haya expuesto u a c . El efecto causal
se estima como Yt(u)− Yc(u).

2 Homogenedidad de las unidades: Yt(u1) = Yt(u2) y
Yc(u1) = Yc(u2). El efecto casual se toma como
Yt(u1)− Yc(u2). Esta hipótesis es común en diseños
experimentales.

3 Independencia estad́ıstica: E (Yt) = E (Yt | S = t) y
E (Yc) = E (Yc | S = c).

Obérvese que en las dos primeras se estima el efecto causal
por unidad.
La última requiere que el resultado sea independiente de ser
tratado o no (i.e., lo que no sucede en la Paradoja de Simpson
porque existe un factor común, sexo, que afecta el resultado y
el tratamiento).



Hipótesis de Independencia y Regresión: Lineal

La hipótesis de independencia condicional se cumple cuando el
tratamiento se asigna de forma aleatoria.

En ese caso una forma de estimar el efecto es:

y = β0 + β1T (4)

donde T es la dummy de ser tratado o no.

En este caso el estimador de ḿınimos cuadrados ordinarios es
un estimador no sesgado de el efecto promedio del
tratamiento.



Paradoja de Simpson: Ejemplo

Una versión continua de esta paradoja es la siguiente.
Considere la relación entre el colesterol y el ejercicio de un
grupo de personas.

�
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4 Causal Inference in Statistics
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Figure 1.2 Results of the exercise–cholesterol study, unsegregated. The data points are identical to
those of Figure 1.1, except the boundaries between the various age groups are not shown

recorded at the end of the experiment. In this case, we know that the drug affects recovery
by lowering the blood pressure of those who take it—but unfortunately, it also has a toxic
effect. At the end of our experiment, we receive the results shown in Table 1.2. (Table 1.2 is
numerically identical to Table 1.1, with the exception of the column labels, which have been
switched.)

Now, would you recommend the drug to a patient?
Once again, the answer follows from the way the data were generated. In the general pop-

ulation, the drug might improve recovery rates because of its effect on blood pressure. But
in the subpopulations—the group of people whose posttreatment BP is high and the group
whose posttreatment BP is low—we, of course, would not see that effect; we would only see
the drug’s toxic effect.

As in the gender example, the purpose of the experiment was to gauge the overall effect of
treatment on rates of recovery. But in this example, since lowering blood pressure is one of
the mechanisms by which treatment affects recovery, it makes no sense to separate the results
based on blood pressure. (If we had recorded the patients’ blood pressure before treatment,
and if it were BP that had an effect on treatment, rather than the other way around, it would be
a different story.) So we consult the results for the general population, we find that treatment
increases the probability of recovery, and we decide that we should recommend treatment.
Remarkably, though the numbers are the same in the gender and blood pressure examples, the
correct result lies in the segregated data for the former and the aggregate data for the latter.

None of the information that allowed us to make a treatment decision—not the timing of the
measurements, not the fact that treatment affects blood pressure, and not the fact that blood

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

No drug Drug

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
High BP 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)



Paradoja de Simpson: Ejemplo

Ahora si condicionamos a la edad la historia es muy distinta.

�
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Preliminaries: Statistical and Causal Models 3

The answer is nowhere to be found in simple statistics. In order to decide whether the drug
will harm or help a patient, we first have to understand the story behind the data—the causal
mechanism that led to, or generated, the results we see. For instance, suppose we knew an
additional fact: Estrogen has a negative effect on recovery, so women are less likely to recover
than men, regardless of the drug. In addition, as we can see from the data, women are signifi-
cantly more likely to take the drug than men are. So, the reason the drug appears to be harmful
overall is that, if we select a drug user at random, that person is more likely to be a woman and
hence less likely to recover than a random person who does not take the drug. Put differently,
being a woman is a common cause of both drug taking and failure to recover. Therefore, to
assess the effectiveness, we need to compare subjects of the same gender, thereby ensuring
that any difference in recovery rates between those who take the drug and those who do not
is not ascribable to estrogen. This means we should consult the segregated data, which shows
us unequivocally that the drug is helpful. This matches our intuition, which tells us that the
segregated data is “more specific,” hence more informative, than the unsegregated data.

With a few tweaks, we can see how the same reversal can occur in a continuous example.
Consider a study that measures weekly exercise and cholesterol in various age groups. When
we plot exercise on the X-axis and cholesterol on the Y-axis and segregate by age, as in
Figure 1.1, we see that there is a general trend downward in each group; the more young
people exercise, the lower their cholesterol is, and the same applies for middle-aged people
and the elderly. If, however, we use the same scatter plot, but we don’t segregate by gender
(as in Figure 1.2), we see a general trend upward; the more a person exercises, the higher their
cholesterol is. To resolve this problem, we once again turn to the story behind the data. If we
know that older people, who are more likely to exercise (Figure 1.1), are also more likely to
have high cholesterol regardless of exercise, then the reversal is easily explained, and easily
resolved. Age is a common cause of both treatment (exercise) and outcome (cholesterol). So
we should look at the age-segregated data in order to compare same-age people and thereby
eliminate the possibility that the high exercisers in each group we examine are more likely to
have high cholesterol due to their age, and not due to exercising.

However, and this might come as a surprise to some readers, segregated data does not always
give the correct answer. Suppose we looked at the same numbers from our first example of drug
taking and recovery, instead of recording participants’ gender, patients’ blood pressure were

Y
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Figure 1.1 Results of the exercise–cholesterol study, segregated by age



Paradoja de Simpson: Ejemplo

De nuevo, la unica forma de racionalizar esto es apelando a
alguna teoŕıa (historia) que va más allá de los datos
disponibles.

Suponga que los mayores hacen más ejercicio que los más
jóvenes y tiene el colesterol más alto independientemente de si
hacen ejercicio.

Entonces la edad es un factor común del ejercicio y los niveles
de colesterol.



Paradoja de Simpson: Desagregar los datos no es siempre
la solución

Suponga que en el primer ejemplo no se registra el sexo. Se
registra la presión arterial después del experimento.

Suponga que la droga afecta la recuperación reduciendo la
presión pero también tiene un efecto tóxico. En cada
subgrupo el efecto tóximo predomina.

Los resultados del experimentos son como a continuación
(esta gráfica es idéntica a la anteriores excepto que se
intercambiaron los nombres de las columnas).



Paradoja de Simpson: Ejemplo

Los resultados a nivel agregado sugieren que se debe usar la
droga, pero no si se analizan los datos condicional a la presión
arterial.

Si la presión arterial se midiera antes del experimento y esta
tuviera un efecto sobre las personas que acceden al
tratamiento y no al contrario, encontrariamos lo contrario,

�
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�
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No drug Drug

Low BP 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
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En este caso:

E (Yt) = E (Yt | S = t),E (Yc) = E (Yc | S = c) (5)

porque, por lo menos la otra variable obsevada la presion, no
explica ser tratado (esta se mide después del tratamiento).



Paradoja de Simpson: Conclusiones

En conclusion: En algunos casos la respuesta correcta puede
estar en los datos desagregados, como en el primer ejemplo y
en otros casos en la informacion agregada como en el segundo
ejemplo.

En la paradoja de Simpson, el problema está en asumir que la
participación en el tratamiento y el resultado no son
dependientes. Existe un factor común, el sexo, que induce una
autoselección de los tratados.

El análisis estad́ıstico solo no permite responder estas
preguntas, es necesario hipótesis adicionales y una teoŕıa de
como se generan los datos.



Correlación y Causalidad

En los ejemplos anteriores hemos puesto a prueba nuestra
intuición sobre la hipótesis de independencia. Sin embargo, la
causalidad es un fenómeno aún más especial.

Considere la correlación que eixste entre:
1 Crimen y consumo de helados.
2 Ocupación hotelera y precios.
3 Incendios y número de bomberos.
4 Personas que andan apuradas y llegada tarde a reuniones, etc.

content...

En las próximas secciones vamos a desarrollar una teoŕıa de la
dependencia y causalidad entre variables.
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Probabilidad Condicional y Ley de Bayes

La paradoja del gato (Monty Hall).

Esta paradoja tiene origen en que en ocasiones nuestras
creencias solo dependen de los datos observados y
deconocen la forma como se generan esos datos.

Cuando el maestro de ceremonias abre la puerta donde no
está el gato esto no es por si solo informativo hasta tanto no
se cuestione el procesos de decisión que siguió este para abrir
la puerta.



La paradoja del gato (Monty Hall) Formalmente

Supongamos que la primera elección fue la tercera puerta.

Sean A1,A2 y A3 los eventos en los cuales el gato está detrás
de la puerta 1, 2 o 3 respectivamente.

Sean B1 y B2 los eventos en los cuales el segundo jugador
abre la puerta 1 o 2 respectivamente.

Nuetro objetivo es calcular P (Ai | Bj). Entonces dada la
información del problema es natural suponer:

P(Ai ) =
1

3
,P (B1|A1) = P (A2|B2) = 0

P(B1|A2) = P(B2|A1) = 1

y

P(B1|A3) = P(B2|A3) =
1

2
.

Ahora, si la segunda persona abre la puerta 2 usando la regla
de Bayes obtenemos P (A1|B2) = 2

3
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Modelos de Causalidad

Modelos Causales Estructurales: SCM

Un modelo causal consiste de un conjunto de variables
aleatorias U y V y un conjunto de funciones F que establecen
una relación entre las variables de U y V .

Example (Salario, educación y experiencia)

Sea U = {X ,Y },V = {Z} y F = {fZ}, tal que fZ es la
distribución de Z := 2X + 3Y . El modelo representa la relación de
causalidad entre X , años de escolaridad, Y experiencia profesional
y Z salario.

Universidad de los Andes y Quantil Fundamentos Causalidad I



Modelos Gráficos

Grafos: Pariente, hijo, descendientes.

Todo SCM define se puede representar como un modelo
gráfico (grafos dirigidos aćıclicos).

Example (Salario, educacion y experiencia)

�

� �

�

Preliminaries: Statistical and Causal Models 27

The variables in U are called exogenous variables, meaning, roughly, that they are external to
the model; we choose, for whatever reason, not to explain how they are caused. The variables
in V are endogenous. Every endogenous variable in a model is a descendant of at least one
exogenous variable. Exogenous variables cannot be descendants of any other variables, and in
particular, cannot be a descendant of an endogenous variable; they have no ancestors and are
represented as root nodes in graphs. If we know the value of every exogenous variable, then
using the functions in f , we can determine with perfect certainty the value of every endogenous
variable.

For example, suppose we are interested in studying the causal relationships between a treat-
ment X and lung function Y for individuals who suffer from asthma. We might assume that Y
also depends on, or is “caused by,” air pollution levels as captured by a variable Z. In this case,
we would refer to X and Y as endogenous and Z as exogenous. This is because we assume
that air pollution is an external factor, that is, it cannot be caused by an individual’s selected
treatment or their lung function.

Every SCM is associated with a graphical causal model, referred to informally as a “graph-
ical model” or simply “graph.” Graphical models consist of a set of nodes representing the
variables in U and V , and a set of edges between the nodes representing the functions in f . The
graphical model G for an SCM M contains one node for each variable in M. If, in M, the func-
tion fX for a variable X contains within it the variable Y (i.e., if X depends on Y for its value),
then, in G, there will be a directed edge from Y to X. We will deal primarily with SCMs for
which the graphical models are directed acyclic graphs (DAGs). Because of the relationship
between SCMs and graphical models, we can give a graphical definition of causation: If, in a
graphical model, a variable X is the child of another variable Y , then Y is a direct cause of X;
if X is a descendant of Y , then Y is a potential cause of X (there are rare intransitive cases in
which Y will not be a cause of X, which we will discuss in Part Two).

In this way, causal models and graphs encode causal assumptions. For instance, consider
the following simple SCM:

SCM 1.5.1 (Salary Based on Education and Experience)

U = {X,Y}, V = {Z}, F = {fZ}

fZ ∶ Z = 2X + 3Y

This model represents the salary (Z) that an employer pays an individual with X years of
schooling and Y years in the profession. X and Y both appear in fZ , so X and Y are both direct
causes of Z. If X and Y had any ancestors, those ancestors would be potential causes of Z.

The graphical model associated with SCM 1.5.1 is illustrated in Figure 1.9.

Z

X Y

Figure 1.9 The graphical model of SCM 1.5.1, with X indicating years of schooling, Y indicating years
of employment, and Z indicating salary



Modelos Gráficos: Regla de descomposición del producto

Cuando un grafo es aćıclico sobre variables aleatorias
{X1, ...,Xn} la distribución de probabiliad conjunta de
(X1, ...,Xn) se puede descomponer como:

P(X1, ...,Xn) =
n∏

i=1

P(Xi | pai )

donde pai son los parientes de Xi .
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Ejemplos SCM

Example (Financiación de la Escuela, SAT Promedio, Tasa
Aceptación Universidad)

Sea V = {X ,Y ,Z},U = Ux ,Uy ,Uz y F = {fx , fy , fz}:

X := UX

Y :=
X

3
+ UY

z :=
Y

16
+ UZ

Example (Horas de Trabajo, Entrenamiento, Tiempo de Carreras)

Sea V = {X ,Y ,Z},U = Ux ,Uy ,Uz y F = {fx , fy , fz} y:

X = UX

Y = 84− X + UY

Z =
100

Y
+ UZ



Modelos Gráficos Asociados: Cadenas

Los dos ejemplos anteriores se pueden representar gáficamente
como:

�

� �

�
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SCM 2.2.3 (Work Hours, Training, and Race Time)

V = {X,Y , Z},U = {UX ,UY ,UZ},F = {fX , fY , fZ}

fX ∶ X = UX

fY ∶ Y = 84 − x + UY

fZ ∶ Z = 100
y

+ UZ

SCMs 2.2.1–2.2.3 share the graphical model shown in Figure 2.1.
SCMs 2.2.1 and 2.2.3 deal with continuous variables; SCM 2.2.2 deals with categorical

variables. The relationships between the variables in 2.1.1 are all positive (i.e., the higher the
value of the parent variable, the higher the value of the child variable); the correlations between
the variables in 2.2.3 are all negative (i.e., the higher the value of the parent variable, the lower
the value of the child variable); the correlations between the variables in 2.2.2 are not linear at
all, but logical. No two of the SCMs share any functions in common. But because they share
a common graphical structure, the data sets generated by all three SCMs must share certain
independencies—and we can predict those independencies simply by examining the graphical
model in Figure 2.1. The independencies shared by data sets generated by these three SCMs,
and the dependencies that are likely shared by all such SCMs, are these:

1. Z and Y are dependent
For some z, y,P(Z = z|Y = y) ≠ P(Z = z)

2. Y and X are dependent
For some y, x,P(Y = y|X = x) ≠ P(Y = y)

3. Z and X are likely dependent
For some z, x,P(Z = z|X = x) ≠ P(Z = z)

4. Z and X are independent, conditional on Y
For all x, y, z,P(Z = z|X = x, Y = y) = P(Z = z|Y = y)

To understand why these independencies and dependencies hold, let’s examine the graphical
model. First, we will verify that any two variables with an edge between them are dependent.
Remember that an arrow from one variable to another indicates that the first variable causes
the second—and, more importantly, that the value of the first variable is part of the function
that determines the value of the second. Therefore, the second variable depends on the first for

UZ

UY

UX

Z

X

Y

Figure 2.1 The graphical model of SCMs 2.2.1–2.2.3

Este es un ejemplo de una cadena.

Decimos que Z es potencialmente dependiente de Y , Y es
potencialmente dependiente de X , Z es potencialmente
dependiente de X ; y Z e independiente de X condicional en
Y .



Modelos Gráficos: Independencia Condicional en Cadenas

Definition

Dos variables X y Z son condicionalmente independientes dado Y
si existe solo un camino unidireccional entre X y Z , y Y es
cualquier conjunto de variables que intercepta este camino.



Ejemplo SCM

Example (Temperatura, Helados y Crimen)

Sea V = {X ,Y ,Z},U = Ux ,Uy ,Uz y F = {fx , fy , fz} y:

x := Ux

y := 4x + Uy

z :=
x

10
+ Uz



Modelos Gráficos Asociados: Bifurcaciones

El ejemplo anterior se pueden representar gáficamente como:

�

� �

�
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Rule 1 (Conditional Independence in Chains) Two variables, X and Y, are conditionally
independent given Z, if there is only one unidirectional path between X and Y and Z is any set
of variables that intercepts that path.

An important note: Rule 1 only holds when we assume that the error terms UX , UY , and UZ
are independent of each other. If, for instance, UX were a cause of UY , then conditioning on
Y would not necessarily make X and Z independent—because variations in X could still be
associated with variations in Y , through their error terms.

Now, consider the graphical model in Figure 2.2. This structure might represent, for
example, the causal mechanism that connects a day’s temperature in a city in degrees
Fahrenheit (X), the number of sales at a local ice cream shop on that day (Y), and the number
of violent crimes in the city on that day (Z). Possible functional relationships between these
variables are given in SCM 2.2.5. Or the structure might represent, as in SCM 2.2.6, the causal
mechanism that connects the state (up or down) of a switch (X), the state (on or off) of one light
bulb (Y), and the state (on or off) of a second light bulb (Z). The exogenous variables UX ,UY ,
and UZ represent other, possibly random, factors that influence the operation of these devices.

SCM 2.2.5 (Temperature, Ice Cream Sales, and Crime)

V = {X,Y , Z},U = {UX ,UY ,UZ},F = {fX , fY , fZ}

fX ∶ X = UX

fY ∶ Y = 4x + UY

fZ ∶ Z = x
10

+ UZ

SCM 2.2.6 (Switch and Two Light Bulbs)

V = {X,Y , Z},U = {UX ,UY ,UZ},F = {fX , fY , fZ}

fX ∶ X = UX

fY ∶ Y =

{
On IF (X = Up AND UY = 0) OR (X = Down AND UY = 1)
Off otherwise

fZ ∶ Z =

{
On IF (X = Up AND UZ = 0) OR (X = Down AND UZ = 1)
Off otherwise

ZY

X
UY

UX

UZ

Figure 2.2 The graphical model of SCMs 2.2.5 and 2.2.6

Este es un ejemplo de una bifurcación.

Decimos que Z es potencialmente dependiente de X , Y es
potencialmente dependiente de X , Z es potencialmente
dependiente de Y , Z es independiente de Y condicional en X .



Modelos Gráficos: Independencia Condicional en
Bifurcaciones

Definition

Si una variable X es una causa común de Y y Z y solo hay un
camino entre Y y Z entonces Y y Z son independientes
condicional a X .



Modelos Gráficos Asociados: Colisionadores

Sea Z = X + Y donde X y Y son independientes.

Por ejemplo X ,Y pueden ser el resultado de lanzar
aleaoriamente una moneda al aire. Si por lo menos una cae
cara Z se activa, suena una campana.

Sea X la habilidad musical de un individuo y Y su desepeño
académico. X ,Y son posiblemente independientes. Ahora sea
Z si la persona tiene una beca de estudio o no.



Modelos Gráficos Asociados: Colisionadores

Lo ejemplos anteriores se pueden representar gáficamente
como:

�

� �

�
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YX

Z

UY

UZ

UX

Figure 2.3 A simple collider

model alone. In the case of the model in Figure 2.3, assuming independence of UX ,UY , and
UZ , these independencies are as follows:

1. X and Z are dependent.
For some x, z,P(X = x|Z = z) ≠ P(X = x)

2. Y and Z are dependent.
For some y, z,P(Y = y|Z = z) ≠ P(Y = y)

3. X and Y are independent.
For all x, y,P(X = x|Y = y) = P(X = x)

4. X and Y are dependent conditional on Z.
For some x, y, z,P(X = x|Y = y, Z = z) ≠ P(X = x|Z = z)

The truth of the first two points was established in Section 2.2. Point 3 is self-evident; neither
X nor Y is a descendant or an ancestor of the other, nor do they depend for their value on the
same variable. They respond only toUX andUY , which are assumed independent, so there is no
causal mechanism by which variations in the value of X should be associated with variations
in the value of Y . This independence also reflects our understanding of how causation operates
in time; events that are independent in the present do not become dependent merely because
they may have common effects in the future.

Why, then, does point 4 hold? Why would two independent variables suddenly become
dependent when we condition on their common effect? To answer this question, we return
again to the definition of conditioning as filtering by the value of the conditioning variable.
When we condition on Z, we limit our comparisons to cases in which Z takes the same value.
But remember that Z depends, for its value, on X and Y . So, when comparing cases where
Z takes, for example, the value, any change in value of X must be compensated for by a change
in the value of Y—otherwise, the value of Z would change as well.

The reasoning behind this attribute of colliders—that conditioning on a collision node pro-
duces a dependence between the node’s parents—can be difficult to grasp at first. In the most
basic situation where Z = X + Y , and X and Y are independent variables, we have the follow-
ing logic: If I tell you that X = 3, you learn nothing about the potential value of Y , because
the two numbers are independent. On the other hand, if I start by telling you that Z = 10, then
telling you that X = 3 immediately tells you that Y must be 7. Thus, X and Y are dependent,
given that Z = 10.

This phenomenon can be further clarified through a real-life example. For instance, suppose
a certain college gives scholarships to two types of students: those with unusual musical talents
and those with extraordinary grade point averages. Ordinarily, musical talent and scholastic
achievement are independent traits, so, in the population at large, finding a person with musical

X y Z , y Y y Z son dependientes. X y Y son independientes
pero X y Y dado Z son dependientes.



Modelos Gráficos: Independencia Condicional en
Colisionadores

Definition

Si una variable Z es una variable de colisión entre dos variables X
y Y , y existe solo un camino entre X y Y , entonces X y Y son
incondicionalmente independientes, pero son dependientes
condionalmente en Z y cualquiera de sus descendietes.



Modelos Gráficos: Independencia Condicional en
Colisionadores

En el ejemplo de la paradoja del gato (i.e., Monty Hall
problem) el nodo X es la puerta que el agente elige, el nodo
Y es donde esta el gato y Z es la puerta que abre el maestro
de ceremonia.

Si X es distinto a Y , Z queda completamente determinado.

Condicional a la elección de maestro (Z ) la eleccón de la
puerta (X ) y donde esta el gato (Y ) son dependientes.



Modelos Gráficos: Independencia Condicional en
Colisionadores

Example (Z = X+Y)

X ,Y Bernoulli independientes.

�
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Table 2.2 Conditional probability distributions for the distribution
in Table 2.2. (Top: Distribution conditional on Z = 1. Bottom:
Distribution conditional on Z = 0)

X Y P(X,Y|Z = 1)

Heads Heads 0.333
Heads Tails 0.333
Tails Heads 0.333
Tails Tails 0

X Y Pr(X,Y|Z = 0)

Heads Heads 0
Heads Tails 0
Tails Heads 0
Tails Tails 1

Another example of colliders in action—one that may serve to further illuminate the diffi-
culty that such configurations can present to statisticians—is the Monty Hall Problem, which
we first encountered in Section 1.3. At its heart, the Monty Hall Problem reflects the presence
of a collider. Your initial choice of door is one parent node; the door behind which the car is
placed is the other parent node; and the door Monty opens to reveal a goat is the collision node,
causally affected by both the other two variables. The causation here is clear: If you choose
Door A, and if Door A has a goat behind it, Monty is forced to open whichever of the remaining
doors that has a goat behind it.

Your initial choice and the location of the car are independent; that’s why you initially have
a 1

3
chance of choosing the door with the car behind it. However, as with the two independent

coins, conditional on Monty’s choice of door, your initial choice and the placement of the
prizes are dependent. Though the car may only be behind Door B in 1

3
of cases, it will be

behind Door B in 2
3
of cases in which you choose Door A and Monty opened Door C.

Just as conditioning on a collider makes previously independent variables dependent, so too
does conditioning on any descendant of a collider. To see why this is true, let’s return to our
example of two independent coins and a bell. Suppose we do not hear the bell directly, but
instead rely on a witness who is somewhat unreliable; whenever the bell does not ring, there
is 50% chance that our witness will falsely report that it did. LettingW stand for the witness’s
report, the causal structure is shown in Figure 2.4, and the probabilities for all combinations
of X, Y , and W are shown in Table 2.3.

The reader can easily verify that, based on this table, we have

P(X = “Heads”|Y = “Heads”) = P(X = “Heads”) = 1
2

and

P(X = “Heads”|W = 1) = (0.25 + 0.25) or ÷ (0.25 + 0.25 + 0.25 + 0.125) = 0.5
0.85

and

P(X = “Heads”|Y = “Heads”, W = 1) = 0.25 or ÷ (0.25 + 0.25) = 0.5 <
0.5
0.85



Modelos Gráficos: Independencia Condicional en
Colisionadores

La condición de dependencia condicional a un colisionador es
importante para determinar si un modelo causal generó un
conjunto de datos, para descubrir el modelo a partir de los
datos y para resolver la Paradoja de Simpson.

Esta propiedad deja claro una nueva forma en la que dos
variables pueden ser dependientes:

1 Una variable causa la otra.
2 Una tercera variable causa ambas.
3 Dependencia condicional a Z . Obérvese que en esta última X

y Y son independientes.



Modelos Gráficos: d-separación (separación direccional)

El concepto de d-separación sirve como criterio para explorar
las dependencias en cualquier modelo gráfico.

Dos nodos que están d-separados son independientes. Si no
están d-separados entonces son potencialmente dependientes.



Modelos Gráficos: d-separación

Definition (d-separación)

Decimos que un camino p es bloqueado por un conjunto de nodos
Z si se cumple alguna de estas:

1 p contiene un cadena A→ B → C donde B ∈ Z .

2 p contiene un bifurcación A← B → C donde B ∈ Z .

3 p contiene un colisionador A→ B ← C donde B 6∈ Z y
ningún descendiente de B está en Z .

Si Z bloquea todos los caminos de X a Y entonces X y Y están
d-separados condicional en Z y por lo tanto X y Y son
independientes condicional en Z .



Modelos Gráficos: d-separación

Example (Z,Y d-separados condicional al conjunto vacio)

Solo hay un camino entre Z y Y y ese camino lo bloquea un
colisionador: Z →W ← X . Luego Z y Y son condicionalmente
independientes (i.e., independientes condional al conjunto de nodos
vacio).

�
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UT

Figure 2.7 A graphical model containing a collider with child and a fork

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional
on Z, and thus are independent conditional on Z.

Armed with the tool of d-separation, we can now look at some more complex graph-
ical models and determine which variables in them are independent and dependent, both
marginally and conditional on other variables. Let’s take, for example, the graphical model in
Figure 2.7. This graph might be associated with any number of causal models. The variables
might be discrete, continuous, or a mixture of the two; the relationships between them might
be linear, exponential, or any of an infinite number of other relations. No matter the model,
however, d-separation will always provide the same set of independencies in the data the
model generates.

In particular, let’s look at the relationship between Z and Y . Using an empty conditioning
set, they are d-separated, which tells us that Z and Y are unconditionally independent. Why?
Because there is no unblocked path between them. There is only one path between Z and Y ,
and that path is blocked by a collider (Z → W ← X).

But suppose we condition on W. d-separation tells us that Z and Y are d-connected, con-
ditional on W . The reason is that our conditioning set is now {W}, and since the only path
between Z and Y contains a fork (X) that is not in that set, and the only collider (W) on the path
is in that set, that path is not blocked. (Remember that conditioning on colliders “unblocks”
them.) The same is true if we condition on U, because U is a descendant of a collider along
the path between Z and Y .

On the other hand, if we condition on the set {W ,X}, Z and Y remain independent. This time,
the path between Z and Y is blocked by the first criterion, rather than the second: There is now a
noncollider node (X) on the path that is in the conditioning set. ThoughW has been unblocked
by conditioning, one blocked node is sufficient to block the entire path. Since the only path
between Z and Y is blocked by this conditioning set, Z and Y are d-separated conditional on
{W,X}.

Now, consider what happens when we add another path between Z and Y , as in
Figure 2.8. Z and Y are now unconditionally dependent. Why? Because there is a path
between them (Z ← T → Y) that contains no colliders. If we condition on T , however,
that path is blocked, and Z and Y become independent again. Conditioning on {T ,W},
on the other hand, makes them d-connected again (conditioning on T blocks the path
Z ← T → Y , but conditioning on W unblocks the path Z → W ← X → Y). And if we
add X to the conditioning set, making it {T ,W ,X}, Z, and Y become independent yet
again! In this graph, Z and Y are d-connected (and therefore likely dependent) conditional



Modelos Gráficos: d-separación

Example (Z,Y d-conectados condicionales a W)

Solo hay un camino entre Z y Y . Si se condiciona a W queda una
bifurcación X que no está en el conjunto W y el único colisionador
śı está luego ese camino no está bloqueado.
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Figure 2.7 A graphical model containing a collider with child and a fork

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional
on Z, and thus are independent conditional on Z.

Armed with the tool of d-separation, we can now look at some more complex graph-
ical models and determine which variables in them are independent and dependent, both
marginally and conditional on other variables. Let’s take, for example, the graphical model in
Figure 2.7. This graph might be associated with any number of causal models. The variables
might be discrete, continuous, or a mixture of the two; the relationships between them might
be linear, exponential, or any of an infinite number of other relations. No matter the model,
however, d-separation will always provide the same set of independencies in the data the
model generates.

In particular, let’s look at the relationship between Z and Y . Using an empty conditioning
set, they are d-separated, which tells us that Z and Y are unconditionally independent. Why?
Because there is no unblocked path between them. There is only one path between Z and Y ,
and that path is blocked by a collider (Z → W ← X).

But suppose we condition on W. d-separation tells us that Z and Y are d-connected, con-
ditional on W . The reason is that our conditioning set is now {W}, and since the only path
between Z and Y contains a fork (X) that is not in that set, and the only collider (W) on the path
is in that set, that path is not blocked. (Remember that conditioning on colliders “unblocks”
them.) The same is true if we condition on U, because U is a descendant of a collider along
the path between Z and Y .

On the other hand, if we condition on the set {W ,X}, Z and Y remain independent. This time,
the path between Z and Y is blocked by the first criterion, rather than the second: There is now a
noncollider node (X) on the path that is in the conditioning set. ThoughW has been unblocked
by conditioning, one blocked node is sufficient to block the entire path. Since the only path
between Z and Y is blocked by this conditioning set, Z and Y are d-separated conditional on
{W,X}.

Now, consider what happens when we add another path between Z and Y , as in
Figure 2.8. Z and Y are now unconditionally dependent. Why? Because there is a path
between them (Z ← T → Y) that contains no colliders. If we condition on T , however,
that path is blocked, and Z and Y become independent again. Conditioning on {T ,W},
on the other hand, makes them d-connected again (conditioning on T blocks the path
Z ← T → Y , but conditioning on W unblocks the path Z → W ← X → Y). And if we
add X to the conditioning set, making it {T ,W ,X}, Z, and Y become independent yet
again! In this graph, Z and Y are d-connected (and therefore likely dependent) conditional



Modelos Gráficos: d-separación

Example (Z,Y d-separados condicional a {W,X})
{W ,X} bloquea e único camino entre Z y Y .
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Figure 2.7 A graphical model containing a collider with child and a fork

If Z blocks every path between two nodes X and Y, then X and Y are d-separated, conditional
on Z, and thus are independent conditional on Z.

Armed with the tool of d-separation, we can now look at some more complex graph-
ical models and determine which variables in them are independent and dependent, both
marginally and conditional on other variables. Let’s take, for example, the graphical model in
Figure 2.7. This graph might be associated with any number of causal models. The variables
might be discrete, continuous, or a mixture of the two; the relationships between them might
be linear, exponential, or any of an infinite number of other relations. No matter the model,
however, d-separation will always provide the same set of independencies in the data the
model generates.

In particular, let’s look at the relationship between Z and Y . Using an empty conditioning
set, they are d-separated, which tells us that Z and Y are unconditionally independent. Why?
Because there is no unblocked path between them. There is only one path between Z and Y ,
and that path is blocked by a collider (Z → W ← X).

But suppose we condition on W. d-separation tells us that Z and Y are d-connected, con-
ditional on W . The reason is that our conditioning set is now {W}, and since the only path
between Z and Y contains a fork (X) that is not in that set, and the only collider (W) on the path
is in that set, that path is not blocked. (Remember that conditioning on colliders “unblocks”
them.) The same is true if we condition on U, because U is a descendant of a collider along
the path between Z and Y .

On the other hand, if we condition on the set {W ,X}, Z and Y remain independent. This time,
the path between Z and Y is blocked by the first criterion, rather than the second: There is now a
noncollider node (X) on the path that is in the conditioning set. ThoughW has been unblocked
by conditioning, one blocked node is sufficient to block the entire path. Since the only path
between Z and Y is blocked by this conditioning set, Z and Y are d-separated conditional on
{W,X}.

Now, consider what happens when we add another path between Z and Y , as in
Figure 2.8. Z and Y are now unconditionally dependent. Why? Because there is a path
between them (Z ← T → Y) that contains no colliders. If we condition on T , however,
that path is blocked, and Z and Y become independent again. Conditioning on {T ,W},
on the other hand, makes them d-connected again (conditioning on T blocks the path
Z ← T → Y , but conditioning on W unblocks the path Z → W ← X → Y). And if we
add X to the conditioning set, making it {T ,W ,X}, Z, and Y become independent yet
again! In this graph, Z and Y are d-connected (and therefore likely dependent) conditional



Modelos Gráficos: d-separación

Example (Z,Y incondicionalmente dependientes)
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W,U, {W ,U}, {W,T}, {U,T}, {W,U,T}, {W ,X}, {U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on T , {X, T}, {W,X,T}, {U,X,T}, and
{W ,U,X, T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y , so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions

Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z3,W,X,Z1} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y frommeasurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z2.
(g) Suppose we wish to predict the value of Z2 from measurements of Z3. Would the quality of

our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have testable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated



Modelos Gráficos: d-separación

Example (Z,Y condicional a T independientes)
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W,U, {W ,U}, {W,T}, {U,T}, {W,U,T}, {W ,X}, {U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on T , {X, T}, {W,X,T}, {U,X,T}, and
{W ,U,X, T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y , so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions

Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z3,W,X,Z1} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y frommeasurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z2.
(g) Suppose we wish to predict the value of Z2 from measurements of Z3. Would the quality of

our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have testable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W,U, {W ,U}, {W,T}, {U,T}, {W,U,T}, {W ,X}, {U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on T , {X, T}, {W,X,T}, {U,X,T}, and
{W ,U,X, T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y , so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions

Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z3,W,X,Z1} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y frommeasurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z2.
(g) Suppose we wish to predict the value of Z2 from measurements of Z3. Would the quality of

our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have testable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W,U, {W ,U}, {W,T}, {U,T}, {W,U,T}, {W ,X}, {U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on T , {X, T}, {W,X,T}, {U,X,T}, and
{W ,U,X, T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y , so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions

Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z3,W,X,Z1} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y frommeasurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z2.
(g) Suppose we wish to predict the value of Z2 from measurements of Z3. Would the quality of

our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have testable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated
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T , {X ,T}, {W ,X ,T}, {U,X ,T} y {W ,U,X ,T}.
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W,U, {W ,U}, {W,T}, {U,T}, {W,U,T}, {W ,X}, {U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on T , {X, T}, {W,X,T}, {U,X,T}, and
{W ,U,X, T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y , so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions

Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z3,W,X,Z1} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y frommeasurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z2.
(g) Suppose we wish to predict the value of Z2 from measurements of Z3. Would the quality of

our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have testable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated
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Figure 2.8 The model from Figure 2.7 with an additional forked path between Z and Y

on W,U, {W ,U}, {W,T}, {U,T}, {W,U,T}, {W ,X}, {U,X}, and {W,U,X}. They are
d-separated (and therefore independent) conditional on T , {X, T}, {W,X,T}, {U,X,T}, and
{W ,U,X, T}. Note that T is in every conditioning set that d-separates Z and Y; that’s because
T is the only node in a path that unconditionally d-connects Z and Y , so unless it is conditioned
on, Z and Y will always be d-connected.

Study questions

Study question 2.4.1

Figure 2.9 below represents a causal graph from which the error terms have been deleted.
Assume that all those errors are mutually independent.

(a) For each pair of nonadjacent nodes in this graph, find a set of variables that d-separates
that pair. What does this list tell us about independencies in the data?

(b) Repeat question (a) assuming that only variables in the set {Z3,W,X,Z1} can be
measured.

(c) For each pair of nonadjacent nodes in the graph, determine whether they are independent
conditional on all other variables.

(d) For every variable V in the graph, find a minimal set of nodes that renders V independent
of all other variables in the graph.

(e) Suppose we wish to estimate the value of Y frommeasurements taken on all other variables
in the model. Find the smallest set of variables that would yield as good an estimate of Y
as when we measured all variables.

(f) Repeat question (e) assuming that we wish to estimate the value of Z2.
(g) Suppose we wish to predict the value of Z2 from measurements of Z3. Would the quality of

our prediction improve if we add measurement of W? Explain.

2.5 Model Testing and Causal Search

The preceding sections demonstrate that causal models have testable implications in the data
sets they generate. For instance, if we have a graph G that we believe might have generated

W ,Z son indepenpiedntes condicional a Z1. Esto se puede
probar mediante una regresión: w = rX x + r1z1. Si r1 es
estad́ısticamente diferente a cero, entonces la hipótesis se
rechaza, y el modelo gráfico no lo validan los datos (prueba
local).
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