
Adverse Selection: 
General Theory 

We use the term "adverse selection" when a characteristic of the 
Agent is imperfectly observed by the Principal.1 This term comes 
from a phenomenon well known to insurers: If a company offers a 
rate tailored only to the average-risk population, this rate will attract 
only the high risk population, and the company will therefore lose 
money. This effect may even induce the insurer to deny insurance to 
some risk groups. Other terms sometimes used are "self-selection" 
and "screening." The general idea of adverse selection can be 
grasped from the following example, which will be analyzed fully in 
section 2.2. 

Suppose that the Principal is a wine seller and the Agent a buyer. 
The Agent may have cultivated tastes for good wines or have more 
modest tastes. We will say there are two "types": the sophisticated 
Agent who is ready to pay a high price for good vintage and the fru­
gal Agent whose tastes—or means—may be less developed. 

We can assume that the Principal cannot observe the type of any 
given Agent, or at least that the law (as is often the case) forbids him 
to use nonanonymous prices that discriminate between the two 
types.2 

The key to the solution of the adverse selection problem is the fol­

lowing observation: if the sophisticated Agent is willing to pay more 

1. This chapter and the next chapter develop the Principal-Agent paradigm intro­
duced in section 1.2. 
2. In Pigou's terms, first-degree price discrimination is inieasible besides being illegal. 
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than the frugal Agent for a given increase in the quality of the wine, 
Len the PrincipaLm segment the market by offenng two different 

wine bottles: 

fa wine of high quality for a high price 
1 a wine of lower quality for a lower price 

We will see in section 2.2 how these qualities and prices can be cho­

sen optimally. 

If all goes according to plan, the sophisticated type will choose the 
top high-priced wine, while the frugal type will pick a lower quality 
bottle. Thus the two types of Agent "reveal themselves" through their 
choices of wine. As we will see, this implies that the frugal type buys 
a lower quality than might be socially optimal. The whole point of 
adverse selection problems is to make the Agents reveal their type 
without incurring too high a social distortion. 

Let us briefly consider a few other relevant examples of adverse 

selection. 

• In life insurance, the insured's state of health (and therefore risk of 
dying soon) is not known to the insurer, even if the insured has had a 
medical checkup. As a result the insurer is better off offering several 
insurance packages, each tailored to a specific risk class. (This situa­
tion will be studied in section 3.1.3.) 

• In banking, the borrowers' default risk can be only imperfectly 
assessed, in particular, where entrepreneurs request financing for 
risky projects. A natural idea is to use interest rates to discriminate 
among entrepreneurs. However, this may induce credit rationing, 
unless banks also vary collateral levels.3 

• In labor markets, potential workers have an informational advan­

tage over employers in that they know their innate abilities better. 

sHgwsrvery brief summary °f a b°dy °f uterature that started with 
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Because of this firms must screen workers to select the promising 
candidate and reject all others. 

. in government-regulated firms (state-owned or not), the regulated 
firm has better information on its costs or productivity than the reg­
ulator. The obvious implication is that it can manipulate the way it 
discloses information to the regulator to maximize its profits (see 
section 3.1.1). 

*2.1 Mechanism Design 

Mechanism design is at the root of the study of adverse selection. 
Mechanism design is so important to adverse selection models that 
some authors also call these models mechanism design problems. I 
will not attempt here to give a self-contained presentation of mecha­
nism design. I will assume that the reader has already been exposed 
to this theory. My sole aim will be to remind the reader of the general 
formalistic properties and the results that will be needed later in the 
book.4 The reader who finds this section too abstract can skip it with­
out losing the thread of the chapter. 

The object of mechanism design theory is to explore the means of 
implementing a given allocation of available resources when the rel­
evant information is dispersed in the economy. Take, for instance, a 
social choice problem where each agent i = 1,..., n has some rele­
vant private information 0-v Assume that despite all the reservations 
exemplified by Arrow's theorem, society has decided that the opti­
mal allocation is 

y(0) = (yi(0i, ...,0„),....yJPv - A ) ) 

Presumably it is be easy to implement the allocation if the govern­

ment knows all the 0,'s. However, if only i knows his 0, and, say, his 

4. See Laffont (1989) or Moore (1992) for a more complete exposition. 
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ophmal allocation y,<0) increases with 9„ he is likely to overstate his 

/ s o as to obtain a larger allocation. This can make it very difficult 

for the government to implement y{6). 

The provision of public goods is another example. Everyone ben­
efits from a bridge, but no one particularly cares to contribute to its 
building costs. The optimal financing scheme presumably depends 
on each agent's potential use of the bridge: for example, commuters 
heavily using the bridge might be asked to pay more than infrequent 
commuter types. In the absence of a reliable way to differentiate 
between these individuals, the government will have to rely on vol­
untary declarations. Naturally, to avoid bearing a large portion of 
the cost, the heavy user type of Agent will understate the utility he 
derives from the bridge. As a result the bridge may not be built, as its 
cost may exceed the reported benefits. 

As a final example, consider the implementation of a Walrasian 
equilibrium in an exchange economy. We all know that this has good 
properties under the usual assumptions. However, it is not clear 
how the economy can move to a Walrasian equilibrium. If informa­
tion were publicly available, the government could just compute the 
equilibrium and give all consumers their equilibrium allocations.5 

In practice, the agents' utility functions (or their true demand func­
tions) are their private information, and they can be expected to lie 
so as to maximize their utility. As information is dispersed through­
out the economy, implementable allocations are subject to a large 
number of incentive constraints. 

In all these examples, two related questions arise: 
Can y(0) be implemented? In other words, is it incentive compati­

ble (some authors say "feasible")? What is the optimal choice among 
incentive compatible allocations? 

In more abstract terms we consider a situation where 

iginal vision of the proponents of market socialism. 
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. there are n agents i = 1,..., n characterized by parameters 0, G 0„ 
which are their private information and are often called their "types"'; 
. agents are facing a "Center" whose aim is to implement a given 
allocation of resources, and generally (which is the more interesting 
case) this allocation will depend on the agents' private characteris­
tics 0j. 

Think of the Center as government, or as some economic agent who 
has been given the responsibility of implementing an allocation, or 
even as an abstract entity such as the Walrasian auctioneer. The Cen­
ter needn't be a benevolent dictator; he may be, for instance, the 
seller of a good who wants to extract as much surplus as possible 
from agents whose valuations for the good he cannot observe. 

2.1.1 General Mechanisms 

The problem facing the Center is an incentive problem. The Center 

must try to extract information from the Agents so that he can imple­

ment the right allocation. To do this, he may resort to very compli­

cated procedures, using bribes to urge the Agents to reveal some of 

their private information. This process, however complicated, can 

be summed up by a mechanism {y(.),Mlf ...,M„). This consists of 

a message space M, for each Agent i and a function y(.) from 

MjX ... X Mn to the set of feasible allocations. The allocation rule 

y(•) = (J/i (•)/ • • •/ !/»(•)) determines the allocations of all n Agents as a 

function of the messages they send to the Center.6 Note that gener­

ally these allocations are vectors. 

Given an allocation rule y(.), the Agents play a message game in 

which the message spaces Mt are their strategy sets and the alloca­

tion rule y(.) determines their allocations and therefore their utility 

6. In general, the mechanism involves stochastic allocation rules. 
assume that they are deterministic. 
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levels. Agent i then chooses a message m, in M and sends it to the 

Center, who imposes the allocationy(mv ..., m„). 

Note that in general, the message chosen by Agent i will depend 

on his information /,, which contains his characteristic 6, The 

Agent's information may in fact be richer, as is the case where each 

Agent knows the characteristic of some of his neighbors. Equilib­

rium messages thus will be functions m* (/,) and the implemented 

allocation will be 

Assume, for instance, that the Center is the proverbial Walrasian 

auctioneer and tries to implement a Walrasian equilibrium in a con­

text where he does not know the Agents' preferences. Then one way 

for him to proceed is to ask the agents for their demand functions, to 

compute the corresponding equilibrium, and to give each agent his 

equilibrium allocation. If he is the builder of a bridge, he might 

announce a rule stating under which conditions he will decide to 

build the bridge and how it will be financed; then he would ask each 

Agent for his willingness to pay. 

2.1.2 Application to Adverse Selection Models 

The models we are concerned with in this chapter are very special 
and simple instances of mechanism design. The Principal here is the 
Center, and only one Agent is involved. Thus n=\, and the infor­
mation / of the Agent boils down to his type 0. Given a mech-
^ s m (y(.),M), the Agent chooses the message he sends so as to 
maximize his utility u(y,6): 

m*(0)e«gmjxu(y(m),0) 

and he obtains the corresponding allocation 

y*(0) = y(m*(d)) 
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The revelation principle below7 implies that one can confine atten­
tion to mechanisms that are both direct (where the Agent reports his 
information) and truthful (so that the Agent finds it optimal to 
announce the true value of his information). 

Revelation Principle. 

If the allocation y*{9) can be implemented through some mecha­
nism, then it can also be implemented through a direct truthful 
mechanism where the Agent reveals his information 9. 

The proof of this result is elementary. Let (t/(.), M) be a mechanism 
that implements the allocation \f, and let m*{0) be the equilibrium 
message, so that y* = y o m*. Now consider the direct mechanism 
(i/*(.), 0) . If it were not truthful, then an Agent would prefer to 
announce some 9' rather than his true type 9. So we would have 

u(y*(9),9)<u{y*(9'),9) 

But, by the definition of y*, this would imply that 

u(y(m*(9)),e)<u(y(m*(9')),e) 

Consequently m* cannot be an equilibrium in a game generated by 

the mechanism (y(.),M), since the Agent of type 9 prefers to 

announce m*(0') rather than m*(0). Thus the direct mechanism (y*, 0) 

must be truthful, and by construction, it implements the allocation y*. 

Note that in a direct mechanism the message space of the Agent 

coincides with his type space. Thus in the example of the bridge, the 

Agent needs only to announce his willingness to pay. 

Assume that as is often the case, the allocation y consists of an 

allocation q and a monetary transfer p. The revelation principle 

states that to implement the quantity allocation q{9) using transfers 

7. I only state this principle for the case where n = 1. It is valid more generally, but 
the shape it takes depends on the equilibrium concept used for the message-sending 
game among the n agents. These complications do not concern us here. 
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«<0) it is enough to offer the Agent a menu of contracts. If the Agent 

announces that his type is 0, he will receive the allocation q{6) ^ 

will pay the transfer p(0). 

Direct truthful mechanisms are very simple but rely on messages 

that are not explicit. In the example of the wine seller, one can hardly 

expect the buyer to come into the shop and declare "I am sophisti-

cated" or "I am frugal." A second result sometimes called the taxa­

tion principle comes to our aid in showing that these mechanisms are 

equivalent to a nonlinear tariff r(.) that lets the Agent choose an allo­

cation q and pay a corresponding transfer p = z(q). The proof of this 

principle again is simple. Let there be two types 6 and 0' such that 

q{0) = q(6'); if p(0) is larger than p(0r)/ then the Agent of type 6 can 

pretend to be of type 6', and the mechanism will not be truthful. 

Therefore we must have p(9) = p(0'), and the function r(.) is defined 

unambiguously by 

if q = q(0), then z(q) = p(0) 

In our earlier example the wine seller only needs to offer the buyer 

two wine bottles that are differentiated by their quality and price. 

This is, of course, more realistic; although most retailers do not post 

a nonlinear tariff on their doors, they often use a system of rebates 

that approximates a nonlinear tariff. 

2.2 A Discrete Model of Price Discrimination 

In section 2.3, we will obtain the general solution for the standard 

adverse selection model with a continuous set of types. Here we 

learn first to derive the optimum in a simple two-type model by way 

of heavily graphical techniques and very simple arguments. 

To simplify things, we will reuse the example of a wine seller who 

offers wines of different qualities (and at different prices) in order to 

segment a market in which consumers' tastes differ. This is therefore 
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a model mat exhibits both vertical differentiation and second-degree 
price discrimination.8 

2.2.1 The Consumer 

Let the Agent be a moderate drinker who plans to buy at most one 
bottle of wine within the period we study. His utility is U = 6q - t, 
where q is the quality he buys and 9 is a positive parameter that 
indexes his taste for quality. If he decides not to buy any wine, his 
utility is just 0. 

Note that with this specification, 

V0' > 9, u(q, 0') - u(q, 9) increases in q 

This is the discrete form of what I call the Spence-Mirrlees condition 
in section 2.3. For now, just note its economic significance: At any 
given quality level, the more sophisticated consumers are willing to 
pay more than the frugal consumers for the same increase in quality. 
This is what gives us the hope that we will be able to segment the 
market on quality. 

There are two possible values for 9: 9l < 92i the prior probability 
that the Agent is of type 1 (or the proportion of types 1 in the popu­
lation) is 7i. In the following, I will call "sophisticated" the con­
sumers of type 2 and "frugal" the consumers of type 1. 

2.2.2 The Seller 

The Principal is a local monopolist in the wine market. He can pro­

duce wine of any quality q E (0, <»); the production of a bottle of 

good quality q costs him C{q). I will assume that C is twice differen-

tiable and strictly convex, that C'(0) = 0 and C'(°°) = °°-

8. The classic reference for this model is Mussa-Rosen (1978), who use a continuous 

set of types. 
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The utility of the Principal is just the difference between his 

receipts and his costs, or t - C(q). 

2.2.3 The First-Best: Perfect Discrimination 

If the producer can observe the type 9, of the consumer, he will solve 

the following program: 

max ft - C{qt)) 
< ? / • ' . 

Bill ' *t* ° 

The producer will therefore offer qt = eft such that C(q)) = 0. and 

f* = Ojifito the consumer of type 6if thus extracting all his surplus; 

the consumer will be left with zero utility. 

Figure 2.1 represents the two first-best contracts in the plane (cj, t). 

The two lines shown are the indifference lines corresponding to zero 

utility for the two types of Agent. The curves tangent to them are iso-

profit curves, with equation t = C(q) + K. Their convexity is a con­

sequence of our assumptions on the function C. Note that the utility 

of the Agent increases when going southeast, while the profit of the 

Principal increases when going northwest. 

Both eft and <fa are the "efficient qualities." Since Qx < 62 and 0 

is increasing, we get <g > eft, and the sophisticated consumer buys 

a higher quality wine than the frugal consumer. This type of dis­

crimination, called first-degree price discrimination, is generally 

forbidden by the law, according to which the sale should be anony­

mous: You cannot refuse a consumer the same deal you prepared 

for another consumer.9 However, we are interested in the case 

9^As we will see shortly, the sophisticated consumer envies the frugal consumer's 
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Figure 2.1 
The first-best contracts 

where the seller cannot observe directly the consumer's type. In this 
case perfect discrimination is infeasible no matter what is its legal 
status. 

2.2.4 Imperfect Information 

Now in the second-best situation in information is asymmetric. The 
producer now only knows that the proportion of frugal consumers 
is n. If he proposes the first-best contracts (q\, t\), (q*2, t*2), the 
sophisticated consumers will not choose (q\, t*2) but (q\, t\), since 

92q\ - t\ = (d2 - 0x)q\ > 0 = B2q\ ~ t\ 

The two types cannot be treated separately any more. Both will 
choose the low quality deal (q\, t\). 

Of course, the producer can get higher profits by proposing 
(q\, t\) the point designated A in figure 2.2, since A will be chosen 
only by the sophisticates and only by them. Note that A is located on 
a higher isoprofit curve than (q\, t\), and therefore it gives a higher 
profit to the seller. 
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Figure 2.2 
A potentially improving contract 

A number of other contracts are better than A. Our interest is in the 

best pair of contracts (the second-best optimum). This is obtained bv 

solving the following program: 

max {nit, - C(ft)] + (1 - n)[t2 - C(q2)]} 
fl'(/l'f2',72 

subject to 

fltfi - r2 > 0tf2 - t2 

92q2 - t2 > e2qx - fj 

^2^2 - *2 ^ 0 

(JQ) 
(ic2) 

(IR2) 

The constraints in this program are identified as follows: 

• The two {IC) constraints are the incentive compatibility constraints; 
they state that each consumer prefers the contract that was designed 
for him. 

•The two (IR) constraints are the individual rationality, or participa­
tion constramts; they guarantee that each type of consumer accepts 
his designated contract. 
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We will prove that at the optimum: 

1. (IRJ is active, so tx = 0Tft. 

2. {IC2) is active, whence 

f2 - h = 02(ft - ft). 

3. ft - ft-
4. (JCj) and (IR2) can be neglected. 

5. Sophisticated consumers buy the efficient quality 

ft = A 

Proofs We use (/C2) to prove property 1: 

02ft - f2 > 02ft - ^ > 0jft - fj 

since ft ^ 0 and 62 > 6V If {IRJ was inactive, so would be (/R2), and 

we could increase tx and r2 by the same amount. This would increase 

the Principal's profit without any effect on incentive compatibility. 

Property 2 is proved by assuming that (IC2) is inactive. Then 

02q2 - f2 > 02ft - ta > 0xqx - tx = 0 

We can therefore augment f2 without breaking incentive compatibil­

ity or the individual rationality constraint (ZR2). This obviously 

increases the Principal's profit, and therefore the original mecha­

nism cannot be optimal. 

To prove property 3, let us add {ICJ and {IC2). The transfers r, can­

cel out, and we get 

02(ft " ft) 2= #i(ft> - ft) 

and 

ft - ft > 0 

since 62 > 6V 
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By property 4, the (JQ) can be neglected, since (IC2) is active. By 

property 3, 

t2-t]=02(q2-q1)^^2-^ 

The proof of assertion 1 shows that (IR2) can be neglected. 
Finally, by property 5, we can prove that C'(q2) = 02. If C'(q2) < ^ 

for instance, let £ be a small positive number, and consider the new 

mechanism fa, f,), fe = ft + £' '2 = '2 + ^ ) - K is easily seen that 

^ 2 " *2 = *2«fe - '2 a n d ^ 2 " '2 = *i<fe - h ~ W2 ~ 0,) 

so the new mechanism satisfies all four constraints. Moreover 

t'2 - Cfe) - fe - C(fe) + e(62 - C 'W) 

This tells us that the new mechanism yields higher profits than the 
original one, which is absurd. We can prove in the same way that 
C'(q2) > 92 is impossible (just change the sign of e). 

It is an easy and useful exercise to obtain graphical proofs of these 
five points. The optimal pair of contracts appears to be located as 
shown in figure 2.3. {qv tx) is on the zero utility indifference line of 
the Agent of type 1, and {q2, t2) is the tangency point between an iso-

Figure 2.3 
The second-best optimum 
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profit curve of the seller and the indifference line of the Agent of 
type 2 that goes through {qv tx). 

To fully characterize the optimal pair of contracts, we just have to 
let fa, tx) in figure 2.3 slide on the line f, = 9xqx. Formally the opti­
mum is obtained by replacing q2 with q\ and expressing the values of 
tj and f2 as functions of qv using 

pi " 0rfi 
[f2 - fj = 6>2(̂ 2 - 9 l ) 

This gives 

We can substitute these values in the expression of the Principal's 
profit and solve 

max (w(01<?1 - Cfo)) - (1 - TT)(02 - ex)qx) 

Note that the objective of this program consists of two terms. The 
first term is proportional to the social surplus10 on type 1 and the 
second represents the effect on incentive constraints on the seller's 
objective. Dividing by n, we see that the Principal should maximize 

n 

which we can call the virtual surplus. We will see a similar formula in 
section 2.3. The difference between the social surplus and the virtual 
surplus comes from the fact that when the Principal increases qv he 
makes the type 1 package more alluring to type 2. To prevent type 2 

10. The social surplus is the sum of the objectives of the Principal and the type 1 
Agent. We do not have to worry about the social surplus derived from selling to 
Agent 2, since we know that we implement the first-best q2 = <&. 
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from choosing the contract designated for type 1, he must therefore 

reduce f2, which decreases his own profits. 

We finally get 

1 -n 

so that ft < # the quality sold to the frugal consumers is sub-

efficient.11 

The optimal mechanism has five properties that are common to all 

discrete-type models and can usually be taken for granted, thus 

making the resolution of the model much easier: 

• The highest type gets an efficient allocation. 

• Each type but the lowest is indifferent between his contract and 

that of the immediately lower type. 

• All types but the lowest type get a positive surplus: their informa­

tional rent, which increases with their type. 

• All types but the highest type get a subefficient allocation. 

• The lowest type gets zero surplus. 

Informational rent is a central concept in adverse selection models. 

The Agent of type 2 gets it because he can always pretend his type is 

1, consume quality qv pay the price tv and thus get utility 

92ql - fj 

which is positive. However, type 1 cannot gain anything by pre­

tending to be type 2, since this nets him utility 

dtf2 -12 

11. If the number of frugal consumers n is low, the formula will give a negative 
C'fo,). Then it is optimal for the seller to propose a single contract designed for the 
sophisticated consumers. A more general treatment should take this possibility into 
account from the start. Here this exclusion phenomenon can be prevented by assum­
ing that nm high enough. We will see in section 3.2.6 that this is not possible when 
the Agent s characteristic is multidimensional 
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which is negative. For n types of consumers 6l < ... < Q e a c h t e 

h °n c a n 8 e t informational rent, and this rent will increase from 
02 to d„. Only the lowest type, 0V will receive no rent. 

Remark By the taxation principle, there is a nonlinear tariff that is 
equivalent to the optimal mechanism. It is simply 

ft = tx if <? = <?i 
t = t2 if q = q2 

t = co otherwise 

So the seller needs only to propose the two qualities that will seg­
ment the market.12 

2.3 The Standard Model 

The model we study in this section sums up reasonably well the 

general features of standard adverse selection models. It introduces 

a Principal and an Agent who exchange a vector of goods q and a 

monetary transfer p. The Agent has a characteristic 9 that consti­

tutes his private information. The utilities of both parties are given 

by 

f W(q, t) for the Principal 
"[ U(q, t, 9) for the Agent of type 9 

Note that we do not make the Principal's utility function depend on 

the type 9 of the Agent. This is because the model involves "private 

values" as opposed to "common values." This distinction will be used 

again in chapter 3. When the contract is signed, the Agent knows his 

12. Such an extremely nonlinear tariff is less reasonable when the variable q is a 
quantity index, as it is in the price discrimination problem studied by Maskin-Riley 
(1984). Then it is sometimes possible to implement the optimum mechanism by using 
a menu of linear tariffs. Rogerson (1987) proves that a necessary and sufficient condi­
tion is that the optimal nonlinear schedule t = T(q) be convex. 
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type 0 13 The Principal entertains an a priori belief about the Agent<s 

type. This belief is embodied in a probability distribution/ wi th 

cumulative distribution function F on 0, which we will call the Prin. 
cipal's prior. Because the Agent has a continuous set of possible types 

to choose from, the graphical analysis we used in section 2.2 no longer 

meets our needs, so we must use differential techniques. 

From the revelation principle we already know that the Principal 

just has to offer the Agent a menu of contracts (q(.), t(.)) indexed by an 

announcement of the Agent's type 6 that must be truthful at the equi­

librium. We need to characterize the menus of contracts such that 

(IC) Agent 0 chooses the (q(9), t(0)) that the Principal designed for 

him, 

(IR) Agent 0 thus obtains a utility level at least as large as his reser­
vation utility, meaning the utility he could obtain by trading 
elsewhere (his second-best opportunity). 

The menu of contracts (q(), t(.)) maximizes the expected utility of 
the Principal among all menus that satisfy (IR) and (IC). 

Remarks 

• As in section 2.2, the acronyms (IR) and (IC) come from the terms 
individual rationality and incentive compatibility. 

• As in section 2.2.4, it may be optimal for the Principal to exclude 
some types 0 from the exchange by denying them a contract (or at 
least falling back on a prior "no trade" contract). We, however, 
neglect this possibility in the following analysis. 

• We can neglect the possibility that the optimal mechanism is ran­
dom; exercise 2.5 gives a sufficient condition for the optimal mecha­
nism to be deterministic. 

£«SS^EK£!T: ,O learn his type ° n i y at -
cuss this variant of the s t a n d i A \ e l tS P r o v i s i °ns are executed. I dis-

«ie standard model in section 3.2.5. 
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. We can assume that the Principal faces a population of Agents 
whose types are drawn from the cumulative distribution function F 
This case is isomorphic to that we study here, with a single Agent 
whose type is random in the Principal's view. Many papers vacillate 
between the two interpretations, and so will I here. 

2.3.1 Analysis of the Incentive Constraints 

Let V(0, 0) be the utility achieved by an Agent of type 0 who 
announces his type as 0 and therefore receives utility 

V(O,d) = U(q(0),t(d),0) 

The mechanism {q, t) satisfies the incentive constraints if, and only if, 
being truthful brings every type of Agent at least as much utility as 
any kind of lie: 

V(0, 0) E 0 2 , V(0, 0) > V(0, 0) (IC) 

To simplify notation, we can assume that q is one-dimensional. 
More important, we can take 0 to be a real interval14 [0, 0] and let 
the Agent's utility function take the following form: 

1% r, 0) = u{q, 0) - t 

This presumes a quasi-linearity that implies that the Agent's mar­

ginal utility for money is constant; it simplifies some technical 

points but primarily allows us to use surplus analysis. 

We can further assume that the mechanism (q, t) is differentiate 

enough. It is sometimes possible to justify this assumption rigorously 

by proving that the optimal mechanism indeed is at least piecewise 

differentiable. 

14. The problem becomes more complicated, and the solution takes a very different 
form when 0 is multidimensional; see section 3.2.6. 
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For (q, t) to be incentive compatible, it must be that the following 
first- and second-order necessary conditions hold:15 

V#E0, 
80 
d2V 
— ( 0 , 0)^0 
dd2 

The first-order condition boils down to 

dd dq ad 

As to the second-order condition, that is, 

q(e),£*«*>,ohm)2+fm,eAm (ic2) 
dd2 dq2 \M J dq dO2 

it can be simplified by differentiating (JCj), which gives 

fy d02 

whence by substituting into (IC2), 

d2u da 

The first- and second-order necessary incentive conditions thus can 
be written as 

L'Sr.r^0"8 are cleariy not suffident 'm s e n e r a i ' h ° w e v e r ' w e wj" s ° ° n see 
that they are sufficient in some circumstances. 
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V0G<=>, 

> = !>«)> (ico 
d2u t dq 

B^'V*0 ^ 
Most models used in the literature simplify the analysis by assum­

ing that the cross-derivative d2u/dqd0 has a constant sign. This is 
called the Spence-Mirrlees condition. I will assume that this deriva­
tive is positive: 

w'v"' 5 > " ) > 0 

This condition is also called the single-crossing condition; it indeed 
implies that the indifference curves of two different types can only 
cross once,16 as is shown in figure 2.4 (where, for the sake of con-
creteness, I take u to be increasing and concave in q). 

The Spence-Mirrlees condition has an economic content; it means 
that higher types (those Agents with a higher 9) are willing to pay 
more for a given increase in q than lower types. We may thus hope 
that we will be able to separate the different types of Agents by offer­
ing larger allocations q to higher types and making them pay for the 
privilege. This explains why the Spence-Mirrlees condition is also 
called the sorting condition, as it allows us to sort through the differ­
ent types of Agent. 

Let us now prove that if q belongs to a direct truthful mechanism 

{q, t) if, and only if, q is nondecreasing.17 To see this, consider 

do dq dO dO 

16. The simplest way to see this is to note that for a given q where they cross, the 
indifference curves of different types are ordered. Higher types have steeper indif­
ference curves because the slopes du/dcj increase with 6. 
17. If we had assumed the Spence-Mirrlees condition with d2u/dqdd < 0, then q 

would be nonincreasing. 
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u(q, 02) - t = K2 

u(q,0,)-t = Ki 

Figure 2.4 
The Spence-Mirrlees condition 

By writing (IC{) in 9, we get 

whence 

But the sign of the right-hand side is that of 

for some 0- that lies between 6 and B. Given the Spence-Mirrlees 

condmon this term has the same sign as 0 - § if , is nondecreasing. 

fnat IS, the function 0 - m * > i n c r e a s e s ^ j , fl« . , a n d t h e n 

decreases. Therefore 0 = 0 i s the global maximizer of V(0,8). 
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This is a remarkable result. We started with the doubly infinite (in 
number) global incentive constraints (IC) and the Spence-Mirrlees 
condition allowed us to transform the constraints into the much 
simpler local conditions, (ICX) and (LC2), without any loss of gener­
ality. Note how the problem separates nicely: (IC2) requires that q be 
nondecreasing and (ICJ gives us the associated t. This will be very 
useful in solving the model. If the Spence-Mirrlees condition did not 
hold, the study of the incentive problem would be global and there­
fore much more complex.18 

2.3.2 Solving the Model 

Let us go on analyzing this model with a continuous set of types. We 
will neglect technicalities in the following. In particular, we assume 
that all differential equations can safely be integrated.19 We also 
assume that the Principal's utility function is quasi-separable and is 

t - C{q) 

We further assume that 

meaning that a given allocation gives the higher types a higher utility 

level. Finally, we assume that the Spence-Mirrlees condition holds: 

18 In the few papers (e.g., Moore 1988) that adopt a "nonlocal" approach that does 
not rely on the Spence-Mirrlees condition, typically assumes that only the down­
ward incentive constraints are assumed to bind. Milgrom-Shannon (1994) estabhsh 
a connection between the Spence-Mirrlees condition and the theory of supermodu-

lar functions. , r 

19. Readers interested in a more full and rigorous analysis should turn to Gues-
nerie-Laffont (1984). 
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Let v(0) denote the utility the Agent of type 0 gets at the optimUrn of 

his program. As the optimal mechanism is truthful, we get 

v(d) = V{0,0) = u{q{B). *) ~ W 

and /C, implies that 

which we have assumed is positive. The utility v{0) represents the 

informational rent of the Agent; the equation above shows that this 

rent is an increasing function of his type. Higher types thus benefit 

more from their private information. That is, if type 9 can always 

pretend his type is 0 < 6, he will obtain a utility 

u(q(0), 0) ~ t{0) = v(0) + u(q(0), 0) - u(q(0), 0) 

which is larger than v{0) since u increases in 0. The ability of higher 
types to "hide behind" lower types is responsible for their informa­
tional rent.20 This rent is the price that the Principal has to pay for 
higher types to reveal their information. 

In most applications the individual rationality constraint is taken 
to be independent of the Agent's type.21 This amounts to assuming 
that the Agent's private information is only relevant in his relation­
ship with the Principal. Under this assumption, which is not innocu­
ous,22 we can normalize the Agent's reservation utility to 0 and write 
his individual rationality constraint as 

V0, v(0)=£O (IR) 

Given that v is increasing, the individual rationality constraint (IR) 
boils down to 

20. Note, however, that lower types have no incentive to hide behind higher types. 
£ We will make an important exception in section 3.1.3. 

• bee section 3.2.8 for a general analysis of the adverse selection problem in which 
iwervat.cn uhhties are allowed to depend on types in a nonrestricted way. 

http://iwervat.cn
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V® 2 0 

which must actually be an equality, since transfers are costly for the 
principal. 

These preliminary computations allow us to eliminate the trans­
fers t(0) from the problem; so we have 

(6 d U , < X \A 

whence 

t(0) = u(q(e),e)-v(6) 

= u(q(d), 0) ~ -£(q(x), r)dT 
. e ad 

Let us now return to the Principal's objective23 

(t(9) - C(q(9)))f(0)d0 

Substituting for t, it can be rewritten as 

u{q(6), 6) - J* | ^ ( r ) , x)dx - C(q(9)))f(9)d9 

Let us define the hazard rate 

1 - F(0) 

This definition is borrowed from the statistical literature on duration 

data:24 if F{9) is the probability of dying before age 9, then h{9) rep­

resents the instantaneous probability of dying at age 9 provided that 

one has survived until then. I 

23. Recall that/ is the probability distribution function and F the cumulative distri­
bution function of the Principal's prior on 0. 
24. Some economists improperly define the hazard rate as \/h(0). 
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Now applying Fubini's theorem25 or simply integrating by parts, 

the Principal's objective becomes 

/ = [° H{q{8),8)f{6)de 

where 

du. .. 1 
H{q,e) = u{q,e)-C{q)-je{q,0) — 

The function tf ( # ) , 6) is the virtual surplus. It consists of two terms. 

The first term, 

u(q(0),0)-C(cj(O)) 

is the first-best social surplus,26 namely the sum of the utilities of the 
Principal and the type 0 Agent. The second term, -v'(9)/h(9), there­
fore measures the impact of the incentive problem on the social 
surplus. This term originates in the necessity of keeping the infor­
mational rent v{6) increasing. That is, type 6's allocation is increased, 
then so is his informational rent, and to maintain incentive compat­
ibility, the Principal must also increase the rents of all types 6' > 6 
who are in proportion 1 - F(9). 

We still need to take into account the second-order incentive 
constraint 

%) ^ 0 

The simplest way to proceed is to neglect this constraint in a first 
attempt. The (presumed) solution then is obtained by maximizing 
the integrand of / in every point, whence 

25. Fubini's theorem states that if/ is integrable on [a,b] x [c,d], then 

26. It is appropriate to speak of surplus here because the transfers have a constant 
margmal utility equal to one for both Principal and Agent. 
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dq 

Writing this equation in full, we have 

d2u 
^^cwii-m^ du 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ 

Note that the left-hand side of this equation has the dimension of a 
price; it is in fact just the inverse demand function of Agent 0. Since 
we have assumed that the cross-derivative is positive, this equation 
tells us that price is greater than marginal cost. The difference 
between them is the source of the informational rent, and this differ­
ence represents the deviation from the first-best. 

The Separating Optimum. 

If the function q* is nondecreasing, it is an optimum. We can say that 
types are separated and that revelation is then perfect, as shown in 

figure 2.5. 
Higher types 0 have a larger allocation q, and they pay more for it. 

Note that it is often possible to make assumptions that guarantee the 

separation result. If, for instance, u{q, 9) = 9q and C is convex, then 

it is easily varified that assuming the hazard rate h to be non-

decreasing is sufficient to imply that a* is increasing. The literature 

often resorts to such an assumption because it is satisfied by many 

classic probability distributions. 

Figure 2.5 
A separating optimum 
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It is hard to say much about the shape of the tariff t(q) m g e n e r a ] 

The reader is referred to exercise 2.4 to prove that t(q) is convex if 

u{q, 0) is linear. As Rogerson (1987) has shown, such a convex ty 

can be approximated by a menu of linear tariffs. 

The Bunching Optimum. 

If the function q* happens to be decreasing on a subinterval, it can­

not be the solution. It is then necessary to take into account the con­

straint that q should be nondecreasing, which means resorting to 

optimal control theory. Since I do not expect optimal control theory 

to be a prerequisite to understanding the discussions in this book I 

give a self-contained analysis below, using only elementary con­

cepts. Readers who prefer a more direct treatment should consult 

Laffont (1989,10) and Kamien-Schwartz (1981), for example, for the 

basics of optimal control theory. 

First, note that the solution will consist of subintervals in which q 

is increasing and subintervals in which it is constant. Take a subin­

terval [#,, 62] in which q is increasing and dH/dq is positive. We then 

add a positive infinitesimal function dq{6) to q{9) in that subinterval 

so that dq{6x) = dq{62) = 0 and q + dq stays increasing. This clearly 

increases H on [6}, 02] and so improves the objective of the Principal. 

A similar argument applies when dH/dq is negative on a subinter­

val where q is increasing. Thus, whenever q is increasing, the solu­

tion must satisfy dH/dq = 0, which is just to say that it must 

coincide with q*. 

The determination of the subintervals where q is constant is trick­

ier We take such a (maximal) subinterval [0V 62]. On this subinter­

val the solution must equal a constant q such that q*{ex) = q*(92) 

q. This defines two functions Oft) and 62{q). We just have to 
determine the value of ~q. We let 

F W - | -r-{q,d)dd 
Jem dq 7 
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and assume that F{q) > 0. Then we add to the solution an infinitesi­
mal positive constant on [9V 62] (and afterward, a smaller, decreasing 
amount on [02, 02 + a], where q*(62 + e) = ~q + dq). The Principal's 
objective will be unchanged on [02, 02 + e], since dH/dq = Q there by 
assumption. However, the objective will increase by F{q)dq on 

[6lf 0J- This' a n d a s i m i l a r r e a s o n i n g when Ffi) < 0, prove that we 
must have F{q) = 0. Because dH/dq = 0 in Qx and 02, we can easily 
write the derivative of F as 

F'(q) 
- \ 

e2(q) d^H 

ex(q) dq2 
(q, 0)d0 

Thus, if we make the reasonable assumption that the virtual surplus 

is concave in q}1 d2H/dq2 will be negative and therefore F will be 

decreasing. This implies that if there is a ~q such that F{q) = 0, then it 

is unique, and this completes our characterization of the solution. 

The solution in this more complicated case is depicted in fig­

ure 2.6. In sum, we speak of bunching or pooling of types on the 

subintervals where q is constant, and there is less than perfect reve­

lation. Obviously all the types 9 G \9V 62] pay the same transfer t 

for their constant allocation. 

e e, e2 e 

Figure 2.6 
An optimum with bunching 

27. We assume, for instance 
in0. 

, that u is concave in q, C is convex and d2u/dq2 increases 
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Exercises 

Exercise 2.1 

Assume that there are n types of consumers in the wine-sell^ 

example of section 2.2 and that * , < - . . < 0n. TTieir respective prior 

probabilities are * * , vvith J ^ - 1. Show that the only 

binding constraints are the downward adjacent incentive con­

straints 

for i = 2, n and the individual rationality constraint of the lowest 

type 

0,0, " /, 2= 0 

Exercise 2.2 

In the context of section 2.3.2, assume that u(q, 9) = 0q and C is 

convex. 

1. Show that a necessary and sufficient condition for q* to be 

increasing is that 9 - \/h(0) be increasing. 

2. A function g is log-concave iff log g is concave. Show that all con­

cave functions are log-concave. Show that if (1 - F) is log-concave, 

then q* is increasing. 

3. Show that a* is increasing if 9 is uniformly distributed. 

4. A bit more tricky: Show that if/ is log-concave, then so is (1 - f). 

5. Conclude that q* is increasing if 9 is normally distributed. 

Exercise 2.3 (difficult) 

My characterization of the bunching optimum in section 2.3.2 

implies a hidden assumption: bunching does not occur "at the bot-



Adverse Selection: General Theory 
II 

( o m (on some interval [0. 9,]) nor "at the top' (or, some taten ,1 

[<ly B |). Modify the proof so th.t it covers these two casea as well' 

Exercise 2.4 

Denote t(q) the optimal tariff in the continuous type model of sec­
tion 2.3 and 9(q) the inverse function to the optimal ,j((i). 

1. Prove that f'fa) = ^(q,0(q)) 
dq 

2. Assume that ufo, 0) is linear in 9; prove that t(q) is convex, 

Exercise 2.5 

Let us study the sufficient conditions for the optimal mechanism to 

be deterministic in the continuous-type model of section 2.3. Lei the 

Agent's utility function be u{q, 0) - t and the Principal's utility func­

tion be t - C(q). We assume that u is increasing in 0 and has a posi­

tive cross-derivative, and that C is increasing and convex in a. 

Denote by {Q{0), T(0)) a stochastic mechanism that is a lottery from 

which the (q, t) pair is drawn after the Agent announces his type. 

1. Rewrite the arguments of section 2.3 to show that the Q(0) in the 

optimal stochastic mechanism maximizes 

° EH{q{0), G)f{9)d0 
JO 

1 = 

under the second-order incentive constraint that 

oqdB dO 

2. Assume that EQ'{9) > 0 everywhere. Let cf = EQ. Use Jensen's 

inequality to show that if — is concave in q, then the deterministic 
y 30 
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mechanism scheduJe cf satisfies the incentive constraint a 

improves the objective I 
3. Assume that vfe 0) - <fi- Show that the optimal mechanic 

deterministic. 

References 

Guesnerie, R., and J.-J. Laffont. 1984. A complete solution to a class of principal. 
agent problems with an application to the control of a self-managed firm. Journal gj 
Public Economics. 25:329-69. 

Kamien, M., and N. Schwartz. 1981. Dynamic Optimization: Vie Calculus of Variations 
and Optimal Control in Economics and Management. Amsterdam: N'orth-Holland. 

Laffont, J.-J. 1989. The Economics of Uncertainty and Information. Cambridge: MIT 

Maskin, E., and J. Riley. 1984. Monopoly with incomplete information. Randjourni 
of Economics 15:171-96. 

Milgrom, P., and C. Shannon. 1994. Monotone comparative statics. Econometria 
62:157-80. 

Moore, J. 1988. Contracts between two parties with private information. Remewof 
Economic Studies 55:49-70. 

Mussa, M., and S. Rosen. 1978. Monopoly and product quality. Journal of Economic 
Theory 18:301-17. 

Palfrey, T. 2002. Implementation theory. In Handbook of Game Theory, vol. 3, R 
Aumann and S. Hart, eds. Amsterdam: North-Holland. 

Rogerson, W. 1987. On the optimality of menus of linear contracts. Mimeo. North­
western University. 

Salanie\ B. 2000. The Microeconomics of Market Failures. Cambridge: MIT Press. 

Stiglitz, J., and A. Weiss. 1981. Credit rationing in markets with imperfect informa­
tion. American Economic Review 71:393-410. 




