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Objetives

Choose hyper parameters: regularization parameter, number of
nearest neighbors, layers or neurons of artificial neural net, etc.

Estimating test error.

Model Selection, Validation and Ensembles A. Riascos



Model Selection, Validation and Ensembles
Cross-Validation

Ensemble Methods

Best of the worlds

In reach data environments it is possible to estimate correctly
the hyper parameters of a model as well as the text errro.
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Cross-Validation

When data is not so rich an alternative is to do cross
validation. Cross validation is another key concept form ML.

It is a technique to estimate hyper parameters and the
expected test error.

K - fold cross validation:
1 Divide in K random samples the originals data set. Given

sample k , train a model with the rest of the samples (K − 1
samples). Test the model with the choosen sample. Repeat
and take an average of the K cross validation errors.

2 When K = N, the size of the training set, it is called leave one
out cross validation.
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Cross-Validation: K vrs. 1

Elements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.8. Hypothetical learning curve for a clas-
sifier on a given task: a plot of 1−Err versus the size of
the training set N . With a dataset of 200 observations,
5-fold cross-validation would use training sets of size
160, which would behave much like the full set. How-
ever, with a dataset of 50 observations fivefold cross–
validation would use training sets of size 40, and this
would result in a considerable overestimate of predic-
tion error.

The optimal k depends on the size of the data. A large K
with few data, overestimates the test error. A low K
underestimates the test error. K = 5, 10 are standard.



Cross-Validation: Correct use

Consider a problem with many predictors.

Reduce the number of predictors using any of the studied
techniques.

Use cross validation to estimate hyper parameters and test
error.

Is this a good use of cross-validations?
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Introduction

These are general methodologies for combining a collection of
simpler models.

We give a very brief overview of:
1 Bagging and Sub-bagging.
2 Boosting.
3 Stacking.
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In a nutshell

Bagging is a general methodology for averaging models and
reducing variance.

Bagging is a bootstrap of the prediction.

Sub-bagging is a special case, it is also a boostrap of the
prediction and balances clases when disproportionately
unbalanced.
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In a nutshell
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Sub-bagging is a special case, it is also a boostrap of the
prediction and balances clases when disproportionately
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The BootstrapElements of Statistical Learning (2nd Ed.) c©Hastie, Tibshirani & Friedman 2009 Chap 7
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FIGURE 7.12. Schematic of the bootstrap process.
We wish to assess the statistical accuracy of a quan-
tity S(Z) computed from our dataset. B training sets

Z∗b, b = 1, . . . , B each of size N are drawn with re-
placement from the original dataset. The quantity of
interest S(Z) is computed from each bootstrap training

set, and the values S(Z∗1), . . . , S(Z∗B) are used to as-
sess the statistical accuracy of S(Z).
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Setup

Let τn = {(x1, y1), ..., (xm, ym)} donde yi ∈ {−1, 1}.
Define an initial set of weights for each obervationi :
D1(i) = 1

m . Dt will denote a distribution on the m
observations.
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AdaBoost

For each t = 1, ...,T

Construct a weak classifier htthat minimizes the loss function:
1 Define the error et as:

et =
m∑
i=1

Dt(i)I (yi 6= ht(xi )) (1)

2 Let αt = 1
2 log( 1−et

et
)

3 Modify weights:

Dt+1(i)→ Dt(i) exp(−αtyiht(xi ))

Zt

where Zt =
∑m

i=1 Dt(i)

H(x) = sign(
∑T

t=1 αtht(x))
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Optimal combination of models

Take the prediction of many models as features in a regression
problem.

A simple example is to use regularization techniques to make
combined model (e.g., Ridge, Lasso, etc)
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