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Introduction

Models of Crime in Practice

Many urban centers are currently using crime prediction
models: Los Angeles CA, Atlanta GA, Chicago IL, New York
NW, Alhambra CA, San Francisco CA, Modesto CA, Santa
Cruz, CA.

We applied state of the art modelling to the city of Bogota.

329,793 crime between 2004 y 2014 (georeferenced data, with
time and date stamps).

We compared several models: Point models, elipses, KDE and
spatio temporal models.
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KDE: Example



The State of the Art: Spatio temporal models

The model is based on the introduction of two types of
events: background and replica events.



Modelo Espacio - Temporal: Motivación

Mohler et al.: Self-Exciting Point Process Modeling of Crime 101

Figure 1. On the left, histogram of times (less than 300 days) between Southern California earthquake events of magnitude 3.0 or greater
separated by 110 kilometers or less. On the right, histogram of times (less than 50 days) between burglary events separated by 200 meters or
less.

In seismology a mark Mk, the magnitude of the earthquake, is
associated with each event (tk, xk, yk) and the conditional inten-
sity often takes the form

λ(t, x, y,M) = j(M)λ(t, x, y), (2)

λ(t, x, y) = μ(x, y)

+
∑

{k:tk<t}
g(t − tk, x − xk, y − yk;Mk). (3)

Models of this type, referred to as Epidemic Type Aftershock-
Sequences (ETAS) models, work by dividing earthquakes into
two categories, background events and aftershock events. Back-
ground events occur independently according to a stationary
Poisson process μ(x, y), with magnitudes distributed indepen-
dently of μ according to j(M). Each of these earthquakes then
elevates the risk of aftershocks and the elevated risk spreads in
space and time according to the kernel g(t, x, y,M).

Figure 2. Times of violent crimes between two rivalry gangs in Los
Angeles.

Many forms for g have been proposed in the literature,
though in general the kernel is chosen such that the elevated risk
increases with earthquake magnitude and decreases in space
and time away from each event. For example, the isotropic ker-
nel,

g(t, x, y;M) = K0

(t + c)p
· eα(M−M0)

(x2 + y2 + d)q
, (4)

is one of a variety of kernels reviewed in Ogata (1998). Here
K0, M0, and α are parameters that control the number of after-
shocks, c and d are parameters that control the behavior of the
kernel at the origin, and p and q are parameters that give the
(power law) rate of decay of g.

Standard models for the background intensity μ(x, y) include
spline, kernel smoothing, and Voronoi estimation (Silverman
1986; Ogata and Katsura 1988; Okabe et al. 2000). In the case
of fixed bandwidth kernel smoothing, the background intensity
is estimated by

μ(x, y) = μ ·
∑

k

u(x − xk, y − yk;σ), (5)

where μ is a parameter controlling the overall background rate.
The events (tk, xk, yk,Mk) are assumed to be background events
and in practice can be obtained through a declustering algo-
rithm (Zhuang, Ogata, and Vere-Jones 2002).

The appropriate selection of parameter values is as critical
to the modeling process as specifying accurate forms for μ,
g, and j. The distance in space and time over which the risk
spreads, the percentage of background events vs. aftershocks,
the dependence of the increased risk on magnitude size, etc.,
all can have a great impact on the predictive power of a point
process model. Parameter selection for ETAS models is most
commonly accomplished through maximum likelihood estima-
tion, where the log-likelihood function (Daley and Vere-Jones
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Specification of a Spatio Temporal Model

Consider a model where crime intensity λ(t, x , y) satisfies

λ(t, x , y) = µ(t, x , y) +
∑

k:tk<t

g(t − tk , x − xk , y − yk) (1)



Data

We use crime data between the 16th of april and the 30th of
june de 2017: 16.402 events.

The model is validated in one particular locality of Bogotá.
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Validation

We use Precision Accuracy Index

PAI =
Hit Rate

Percentage of Area

Hit Rate =
Crimes predicted in Hotspots

Total Crimes

Percentage Area =
Area of Hotspots

Total Area



Validation

Hit Rate with 7 weeks of training data and 10 % of covered
area (i.e., hotspots):

Predicción bw fijo bw variable KDE

Semana 1 0,44 0,57 0,42
Semana 2 0,46 0,59 0,44
Semana 3 0,54 0,62 0,53

Promedio 0,48 0,59 0,46
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Validation

Average PAI based on percentage of covered area.



Introduction

Street segments
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