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Statistical Learning

@ Most Statistical Learning techniques fall into one of the
following two categories:
@ Supervised Learning: Data take the form {(x1, 1), ..., (Xn, ¥n)}
where y are the output variables.

@ The aim is to study the behavior of the output variable y
(response variable) conditional on the independent variables x
(predictor variables).

@ Mathematically: study and describe the distribution of y
conditional on x.

@ Unsupervised Learning: Data takes the form {xi, ..., x,}, there
are inputs but no output to supervise.

@ The aim is study the x variables (inputs), its patterns,
clusters, etc.
o Mathematically: study the distribution of x.
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@ To ilustrate the main ideas, let's focus on the classification
task (applications: credit granting, fraud, customer profiling,
etc).

@ Suppose we have a sample 7, = {(x1, 1), .-+, (X, ¥n) }
independently generated by a distribution P(X, Y) where
y €{0,1}.

@ The distribution P is unknown.

@ Assumption: sample is i.i.d.

@ Denote = the space of independent variables (x € =) and T
the space of dependent variables (y € T).

@ A learning function is a function f : = — T. Intuitively, given
an observation of x, the function selects a response f(x).
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@ The standard way to evaluate the performance of a learning
function for the classification task is using a loss function.

@ Let L:=x T x T — {0,1}. Given an observation (x, y), if
f(x) # y then L(x,y,f(x)) =1 and L(x,y,f(x)) =0
otherwise (standard Loss function for binary classification
tasks).

@ The most common way to measure the loss in a regression
task is using the squared error: L(x,y, f(x)) = (f(x) — y)?
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Statistical Learning: Functions and Machine Learning

@ A Machine Learning algorithm M, is an algorithm that enable
us to build a learning function form each sample 7,.

@ Let IF be the set of all learning functions (i.e., f,: = — T),
then:

M:(ExT)" > F (1)

is a machine learning algorithm.

e M(7,) is denoted by f,. The learning function f, depends on
the size of the sample n. For different samples we get different
Learning functions.



Statistical Learning: Pillars

Approximation Error (bias) vs Estimation Error (Variance).
Consistency.

The problem of empirical risk minimization.

Capacity.
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Two Workhorses of Statistical Learning

e Two workhorses (algorithms) of statitical learning are:

© K-Nearest Neighbors.
@ Linear Regression Model.
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Two Workhorses: K-Nearest Neighbors

@ Suppose you have a concept of distance between predictors.

@ Define k as the number of neighbors that the Learning
function uses to classify.

@ Given a sample 7, and x € =, we identify the k points
{Xi,, ..., xi, } that are closest to x.

@ The learning function in binary classification tasks is defined
based on the number of {k : y; = 1}: majority vote.

@ For regression tasks we estimate the average.

@ We denote these learning machines as K — NN,,.
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15-Nearest Neighbor Classifier
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Two Workhorses: K-Nearest Neighbors

@ Note that this learning function fits better in-sample and is
more complex than the previous one.

1-Nearest Neighbor Classifier
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Two Workhorses: Linear Regression

@ Suppose that y; = 37 x; where we include a 1 as the first
coordinate in every vector x; (the constant in the linear
regression model).

@ Defining BA,, as the estimator of ordinary least squares.

o Note that 3, defines a learning function £OL5(x) = 1 if
BT x > 0,5 and zero otherwise.

Y




Two Workhorses: Linear Regression Model

e Black line corresponds to 3, x; = 0,5.
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Statistical Learning: The Classification Task

@ The Overfitting problem.

@ Note that if the true model is the straight line, the empirical
error of the curve is zero but the curve generalizes badly. The
line's empirical error is larger than zero but the line
generalizes better. And viceversa.

@ In the first case, the curve is more complex, the variance is
high and the bias is low. In the second case, the line is less
complex, the variance is low but the bias is high.
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@ Given a learning function f, the risk of f is defined as:
R(f) = Ep[L(X, Y, f(X))]

where P is the joint distribution of X, Y, the true data
generatig process.
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The Learning Problem

@ Given a learning function f, the risk of f is defined as:
R(f) = Ep[L(X, Y, f(X))]

where P is the joint distribution of X, Y, the true data
generatig process.

@ Notice that P is unknown so you cannot actually estimate the
risk of a learning function. We will develop techniques to
estimate this risk.

e Notice also that R(f) is just the out of sample error of the
learning function f (also called test error).

@ The analogous in-sample error (also called training error) is
the called the empirical risk.
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Learning Problem

@ Define [y as a set of functions (i.e., a subset of I the set of
all functions).

@ The learning problem is to solve:
f* = argmingcp, R[f] (2)
Note that [Fg can be the set of all functions. When we want to
make the space [Fy explicit, we define f* as fg,.

o If Fg = F then f* is called the Bayes Classifier (fgayes).

@ Notice that since P is unknown you cannot actually solve the
learning function. You can do experimental simulations.
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Learning Problem

@ We can summarize the primary objetive of statistical learning
as follows: Given a finite sample 7, and a loss function L, we
want to find a space of functions [Fg and a optimal classifier
fr, such that its risk is as close as possible to the Bayes
Classifier.

@ The empirical risk of a classifier is not necessarily a good
estimator of risk.
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Aproximation Error vs. Estimation Error

Bias vs. Variance Tradeoff
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@ Simulation exercise: 200 examples (training set); 10.000
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Bias vs. Variance Tradeoff

High Bias Low Bias
High Variance

Low Variance

n Error

Test Sample

/

Training Sample

Low High

Model Complexity

FIGURE 2.11. Test and training error as a function of model complezity.



Aproximation Error vs. Estimation Error

_— estimation error
approximation error

space lé” of all function

Small function space F
used by the algorithm



Aproximation Error vs. Estimation Error

approximation

complexity of the function class
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Prediction vs Causality

o Kleinberg, Ludwig, Mullainnathan, Obermeyer. 2015.
Prediction Policy Problems. AER.

@ Sometimes, the identification of a causal effect is irrelevant.

@ This paper introduces a conceptual framework to think about
the relationship between the prediction problem and causality.
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Introduction

@ Defining y as the interest variable, we don't know how y
relates to xp (exogenous variable: economic policy) and x
(covariates).

@ The aim is to maximize a known function MN(xp, ).

@ The decision depends on:

on _ on an dy
% %(XO)Y) + afy(xoa)/)afm(xo)

© Even though I is known, the effect of x depends on y
(prediction problem).

@ The second term depends on how xg affects y (causality
problem).

@ Note that both effects depend on the prediction y.

@ Therefore, a policymaker must solve both problems.
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@ Suppose that the interest variable y is defined based on
whether it rains or not. The decision in a problem could be a
ritual so that it does not rain. In another problem the decision
could be to carry or not umbrella.

@ The objective function can be the utility generated by going
to the park a Sunday.

@ The task of doing a ritual is a causality problem:

on

TXO(XO’)/) =0

on _ @(X )67y(x )
Oxg Oy 0. ¥ Ixp "0

@ The ritual has no direct effect on the utility function.
@ It may be the case that %O(XO) # 0.
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@ The problem of carrying an umbrella is a pure problem of
prediction:

oy
g 0
an _ an

Gixo = 87X0(X0,)/)

@ The utility of carrying an umbrella depends on whether it
rains or not.
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