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Estad́ıstica y Modelos Causales

Muchas preguntas que frecuentemente nos hacemos de un
conjunto de datos: cómo (el mecanismo que causa un evento)
y por qué (qué sucedió, qué causo un evento), no es posible
responderlas en el marco estad́ıstico tradicional.

Es necesario un marco conceptual adicional, una teoŕıa de la
causalidad.



Estad́ıstica y Modelos Causales

Queremos poder hacer inferencia causal a partir de datos
observacionales (no solamente de experimentos).

Correlación no implica causalidad.

Tres aproximaciones:
1 Modelos gráficos.
2 Modelo de resultados potenciales.
3 Controles sintéticos.
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Jerarqúıa Causal

Asociación (ver): correlaciones.

Intervenciones (hacer): qué pasaŕıa a nivel poblacional si
subimos el salario ḿınimo.

Contrafactuales (imaginar): qué hubiese pasado a nivel
individual si a un paciente se le hubiera dado invermectina,
dado que no se le dio.

Universidad de los Andes y Quantil Fundamentos Causalidad



Introducción
Modelos Gráficos Dirigidos Aćıclicos: DAGs

Asociación
Intervenciones

DAGs: Representacion de Dependencias Marginales y Condicionales

Contenido

1 Introducción
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Ejemplos

1 Crimen y consumo de helados.

2 Precios y ocupación hotelera.

3 Consumo de chocolate y premios Nobel.

4 V́ıas terciarias y luminosidad (causalidad?).
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questions such as “would the patient have recovered if we had
given him the treatment, even though he did not recover and
has not received the treatment?”

In the following sections, we successively climb this causal
hierarchy. At each level, we discuss the central concepts and
illustrate them with examples. This paper is by no means
exhaustive; instead, it should provide you with a first appreci-
ation of the concepts that surround the graphical approach to
causal inference. The goal is that, after reading the paper, you
will be better equipped than Karl Pearson was in the quest
to understand when correlation does imply causation — and
when it does not.

Correlation Alone Does Not Imply Causation

It is a truth universally echoed by scientists that correlation
does not imply causation. In daily life, however, the former is
frequently mistaken for the latter. Messerli (2012), for exam-
ple, showed a strong positive relationship between chocolate
consumption and the number of Nobel Laureates per coun-
try. Using more recent data, I have found an even stronger
relationship, which is visualized in Figure 1.1 Although it is
difficult to assess whether Messerli (2012) is facetious in his
writing or not, he is careful not to mistake this correlation for
causation. In reporting on the study, the chocolate industry
was less careful, stating that “eating chocolate produces Nobel
prize winners” (Nieburg, 2012).
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Nobel Prizes and Chocolate Consumption

Figure 1. Shows the relationship between chocolate consump-
tion and the number of Nobel Laureates per country.

Correlation by itself does not imply causation because sta-
tistical relations do not uniquely constrain causal relations.
In particular, while chocolate consumption could cause an
increase in Nobel Laureates, an increase in Nobel Laureates
could likewise underlie an increase in chocolate consump-
tion — possibly due to the resulting festivities, as Messerli

(2012) conjectures. More plausibly, unobserved variables
such as socio-economic status or quality of the education sys-
tem might cause an increase in both chocolate consumption
and Nobel Laureates, thus rendering their correlation spurious,
that is, non-causal. The common cause principle states these
three possibilities formally (Reichenbach, 1956):

If two random variables X and Y are statistically
dependent (X 6y Y), then either (a) X causes Y ,
(b) Y causes X, or (c) there exists a third variable
Z that causes both X and Y . Further, X and Y
become independent given Z, i.e., X y Y | Z.

An in principle straightforward way to break this uncertainty
is to conduct an intervention: we could, for example, force
the citizens of Austria to consume more chocolate and study
whether this increases the number of Nobel laureates in the
following years. Such interventions are clearly unfeasible; yet
even in less extreme settings it is frequently unethical, imprac-
tical, or impossible — think of smoking and lung cancer — to
intervene by for example conducting a randomized controlled
trial.

Causal inference provides us with tools that allow us to draw
causal conclusions even in the absence of a true experiment,
given that certain assumptions are fulfilled. These assump-
tions increase in strength as we move up the levels of the
causal hierarchy. In the remainder of this paper, I discuss
the levels association, intervention, and counterfactuals, as
well as the prototypical actions corresponding to each level —
seeing, doing, and imagining.

Seeing

Association is on the most basic level, allowing us to see
that two or more things are somehow related. Importantly,
we need to distinguish between marginal associations, which
look at the assocation between two variables without taking
into account other variables, and conditional associations,
which do take other variables into account. The latter are a
key element of causal inference.

Figure 2 illustrates the difference between marginal and condi-
tional assocations. The left panel shows the whole, aggregated
data. Here, we see that the variables X and Y are positively
correlated: an increase in values for X co-occurs with an
increase in values for Y . This relation describes the marginal
association of X and Y because we do not care whether Z = 0
or Z = 1. On the other hand, as shown in the right panel, if
we condition on the binary variable Z, we find that there is no

1You can download the data from https://fabiandablander.com/

assets/data/nobel-chocolate.csv. It includes Nobel Laureates up
to 2019 and the 2017 chocolate consumption data as reported
by https://www.statista.com/statistics/819288/worldwide-chocolate-
consumption-by-country/.
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Marginal Dependence between X and Y
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Figure 2. Left: Shows marginal dependence between X and
Y . Right: Shows conditional independence between X and Y
given Z.

relation: X y Y | Z.2 In some cases, the relationship between
two variables can even become reversed in sub-populations
compared to the relationship in the whole population. We
will discuss the ramifications of this in a later section in some
detail. For now, we focus on the simple fact that such a
pattern of (conditional) (in)dependencies can exist. In the
next section, we discuss a powerful tool that allows us to
visualize such dependencies.

Directed Acyclic Graphs

We can visualize the statistical dependencies between the
three variables X, Y , and Z using a graph. A graph G is a
mathematical object that consists of nodes and edges. In the
case of Directed Acyclic Graphs (DAGs), these edges are
directed. We take our variables (X,Y,Z) to be nodes in such
a DAG and we draw (or omit) edges between these nodes so
that the conditional (in)dependence structure in the data is
reflected in the graph. We will explain this more formally
shortly. For now, let’s focus on the relationship between the
three variables. We have seen that X and Y are marginally
dependent but conditionally independent given Z. It turns
out that we can draw three DAGs that encode this fact; these
are the first three DAGs in Figure 3. X and Y are dependent
through Z in these graphs, and conditioning on Z blocks the
path between X and Y . (We state this more formally shortly).
While it is natural to interpret the arrows causally, at this
first level of the causal hierarchy, we refrain from doing so.
For now, the arrows are merely tools that help us describe
associations between variables.

The rightmost DAG in Figure 3 encodes a different set of
conditional (in)dependence relations between X, Y , and Z
than the first three DAGs. Figure 4 illustrates this: looking
at the aggregated data we do not find a relation between X
and Y — they are marginally independent — but we do find
one when looking at the disaggregated data — X and Y are
conditionally dependent given Z.
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Figure 3. The first three DAGs encode the same conditional
independence structure, X y Y | Z. In the fourth DAG, Z is a
collider such that X 6y Y | Z.

A toy example might help build intuition: Assume that in the
whole population — which includes singles as well as people
in a relationship — being attractive (X) and being intelligent
(Y) are two independent traits. This is what is illustrated in
the left panel in Figure 4. Let’s make the assumption that both
being attractive and being intelligent are positively related
with being in a relationship. What does this imply? First, it
implies that, on average, single people are less attractive and
less intelligent. This can be seen in the right panel in Figure 4,
where singles (Z = 0) have a lower average value for X and Y
compared to the people in a relationship (Z = 1). Second, and
perhaps counter-intuitively, it implies that in the population
of single people (and people in a relationship, respectively),
being attractive and being intelligent are negatively correlated,
as can also be seen in Figure 4.

Marginal Independence between X and Y

X

Y

−2 0 2 4 6 8 10 12

−2

0

2

4

6

8

10

12

Conditional Dependence between X and Y given Z

X

Y

−2 0 2 4 6 8 10 12

−2

0

2

4

6

8

10

12 Z = 0
Z = 1

Figure 4. Left: Shows marginal independence between X and
Y . Right: Shows conditional dependence between X and Y
given Z

In the above example, visualized in the rightmost DAG in
Figure 3, Z is commonly called a collider. Suppose we want
to estimate the association between X and Y in the whole
population. Conditioning on a collider (for example, by only
analyzing data from people who are not in a relationship)
and then computing the association between X and Y will
lead to a different estimate, and the induced bias is known as
collider bias. It is a serious issue not only in dating, but also
for example in medicine, where it is known as Berkson’s bias

2Instead of having Z only enter the regression as a main effect,
we also include the interaction between Z and X, resulting in the two
separate slopes (red and blue) in Figure 2 (and Figure 4) instead of
one averaged slope. As long as Z enters the regression as a main
effect, we say that we have adjusted for Z.

Marginal porque se promedia sobre Z .

Y crimen, X consumo de helado, Z verano o invierno.

Se puede incluso revesar la asociación en las subpoblaciones
(e.g., Paradoja de Simpson)



Principio Causa Común

Theorem (Reichenbach (1956))

Si dos variables aleatorias X ,Y son estad́ısticamente dependientes
(X á Y ) entonces X causa a Y o Y causa a X o existe una
variable aleatoria Z que causa X ,Y y las hace independientes una
vez se condiciona en Z (X á Y ∣ Z)
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DAGs: Representacion de Dependencias Marginales y
Condicionales

Un camino (no dirigido) representa dependencia marginal
entre las variables.

Las dependencias condicionales dependen de las variables que
se usen para condicionar y como esto afecta los caminos
dirigidos.CAUSAL INFERENCE 3
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Figure 2. Left: Shows marginal dependence between X and
Y . Right: Shows conditional independence between X and Y
given Z.

relation: X y Y | Z.2 In some cases, the relationship between
two variables can even become reversed in sub-populations
compared to the relationship in the whole population. We
will discuss the ramifications of this in a later section in some
detail. For now, we focus on the simple fact that such a
pattern of (conditional) (in)dependencies can exist. In the
next section, we discuss a powerful tool that allows us to
visualize such dependencies.

Directed Acyclic Graphs

We can visualize the statistical dependencies between the
three variables X, Y , and Z using a graph. A graph G is a
mathematical object that consists of nodes and edges. In the
case of Directed Acyclic Graphs (DAGs), these edges are
directed. We take our variables (X,Y,Z) to be nodes in such
a DAG and we draw (or omit) edges between these nodes so
that the conditional (in)dependence structure in the data is
reflected in the graph. We will explain this more formally
shortly. For now, let’s focus on the relationship between the
three variables. We have seen that X and Y are marginally
dependent but conditionally independent given Z. It turns
out that we can draw three DAGs that encode this fact; these
are the first three DAGs in Figure 3. X and Y are dependent
through Z in these graphs, and conditioning on Z blocks the
path between X and Y . (We state this more formally shortly).
While it is natural to interpret the arrows causally, at this
first level of the causal hierarchy, we refrain from doing so.
For now, the arrows are merely tools that help us describe
associations between variables.

The rightmost DAG in Figure 3 encodes a different set of
conditional (in)dependence relations between X, Y , and Z
than the first three DAGs. Figure 4 illustrates this: looking
at the aggregated data we do not find a relation between X
and Y — they are marginally independent — but we do find
one when looking at the disaggregated data — X and Y are
conditionally dependent given Z.
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Figure 3. The first three DAGs encode the same conditional
independence structure, X y Y | Z. In the fourth DAG, Z is a
collider such that X 6y Y | Z.

A toy example might help build intuition: Assume that in the
whole population — which includes singles as well as people
in a relationship — being attractive (X) and being intelligent
(Y) are two independent traits. This is what is illustrated in
the left panel in Figure 4. Let’s make the assumption that both
being attractive and being intelligent are positively related
with being in a relationship. What does this imply? First, it
implies that, on average, single people are less attractive and
less intelligent. This can be seen in the right panel in Figure 4,
where singles (Z = 0) have a lower average value for X and Y
compared to the people in a relationship (Z = 1). Second, and
perhaps counter-intuitively, it implies that in the population
of single people (and people in a relationship, respectively),
being attractive and being intelligent are negatively correlated,
as can also be seen in Figure 4.
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Figure 4. Left: Shows marginal independence between X and
Y . Right: Shows conditional dependence between X and Y
given Z

In the above example, visualized in the rightmost DAG in
Figure 3, Z is commonly called a collider. Suppose we want
to estimate the association between X and Y in the whole
population. Conditioning on a collider (for example, by only
analyzing data from people who are not in a relationship)
and then computing the association between X and Y will
lead to a different estimate, and the induced bias is known as
collider bias. It is a serious issue not only in dating, but also
for example in medicine, where it is known as Berkson’s bias

2Instead of having Z only enter the regression as a main effect,
we also include the interaction between Z and X, resulting in the two
separate slopes (red and blue) in Figure 2 (and Figure 4) instead of
one averaged slope. As long as Z enters the regression as a main
effect, we say that we have adjusted for Z.

Los tres primeros modelos gráficos representan X á Y ∣ Z .

El último modelo gráfico representa X á Y ∣ Z (i.e., collider).

Universidad de los Andes y Quantil Fundamentos Causalidad
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Figure 2. Left: Shows marginal dependence between X and
Y . Right: Shows conditional independence between X and Y
given Z.

relation: X y Y | Z.2 In some cases, the relationship between
two variables can even become reversed in sub-populations
compared to the relationship in the whole population. We
will discuss the ramifications of this in a later section in some
detail. For now, we focus on the simple fact that such a
pattern of (conditional) (in)dependencies can exist. In the
next section, we discuss a powerful tool that allows us to
visualize such dependencies.

Directed Acyclic Graphs

We can visualize the statistical dependencies between the
three variables X, Y , and Z using a graph. A graph G is a
mathematical object that consists of nodes and edges. In the
case of Directed Acyclic Graphs (DAGs), these edges are
directed. We take our variables (X,Y,Z) to be nodes in such
a DAG and we draw (or omit) edges between these nodes so
that the conditional (in)dependence structure in the data is
reflected in the graph. We will explain this more formally
shortly. For now, let’s focus on the relationship between the
three variables. We have seen that X and Y are marginally
dependent but conditionally independent given Z. It turns
out that we can draw three DAGs that encode this fact; these
are the first three DAGs in Figure 3. X and Y are dependent
through Z in these graphs, and conditioning on Z blocks the
path between X and Y . (We state this more formally shortly).
While it is natural to interpret the arrows causally, at this
first level of the causal hierarchy, we refrain from doing so.
For now, the arrows are merely tools that help us describe
associations between variables.

The rightmost DAG in Figure 3 encodes a different set of
conditional (in)dependence relations between X, Y , and Z
than the first three DAGs. Figure 4 illustrates this: looking
at the aggregated data we do not find a relation between X
and Y — they are marginally independent — but we do find
one when looking at the disaggregated data — X and Y are
conditionally dependent given Z.
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Figure 3. The first three DAGs encode the same conditional
independence structure, X y Y | Z. In the fourth DAG, Z is a
collider such that X 6y Y | Z.

A toy example might help build intuition: Assume that in the
whole population — which includes singles as well as people
in a relationship — being attractive (X) and being intelligent
(Y) are two independent traits. This is what is illustrated in
the left panel in Figure 4. Let’s make the assumption that both
being attractive and being intelligent are positively related
with being in a relationship. What does this imply? First, it
implies that, on average, single people are less attractive and
less intelligent. This can be seen in the right panel in Figure 4,
where singles (Z = 0) have a lower average value for X and Y
compared to the people in a relationship (Z = 1). Second, and
perhaps counter-intuitively, it implies that in the population
of single people (and people in a relationship, respectively),
being attractive and being intelligent are negatively correlated,
as can also be seen in Figure 4.
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Figure 4. Left: Shows marginal independence between X and
Y . Right: Shows conditional dependence between X and Y
given Z

In the above example, visualized in the rightmost DAG in
Figure 3, Z is commonly called a collider. Suppose we want
to estimate the association between X and Y in the whole
population. Conditioning on a collider (for example, by only
analyzing data from people who are not in a relationship)
and then computing the association between X and Y will
lead to a different estimate, and the induced bias is known as
collider bias. It is a serious issue not only in dating, but also
for example in medicine, where it is known as Berkson’s bias

2Instead of having Z only enter the regression as a main effect,
we also include the interaction between Z and X, resulting in the two
separate slopes (red and blue) in Figure 2 (and Figure 4) instead of
one averaged slope. As long as Z enters the regression as a main
effect, we say that we have adjusted for Z.

Figura: Colisionador

Z = X +Y , (X á Y ).



d-separación

Un colisionador a lo largo de un camino bloquea el camino.

Sea L un conjunto de nodos (posiblemente vacio) si
condicionamos a L:

1 Si L no tiene un colisionador, entonces se bloquea el camino.
2 S L tiene un colisionador en el camino o descendiente, se

desbloquea el camino.

Definition (d-separación)

Dos nodos X ,Y están d-separados por L si condicionando a L se
bloquean todos los caminos entre X y Y (i.e., X ,Y son
codicionalmente independientes: X á Y ∣ L)



DAGs: d-separación
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(Berkson, 1946; Cole et al., 2010).

The simple graphs shown in Figure 3 are the building blocks
of more complicated graphs. In the next section, we de-
scribe a tool that can help us find (conditional) indepen-
dencies between sets of variables. This becomes very im-
portant later when we introduce Structural Causal Models
(SCMs), which relate causal to probabilistic statements. The
resulting probabilistic statements, which include conditional
(in)dependencies, can then be tested using data.

d-separation

For large graphs, it is not obvious how to conclude that two
nodes are (conditionally) independent. d-separation is a tool
that allows us to check this algorithmically (Geiger, Verma,
& Pearl, 1990). To be able to use this tool, we need to define
the following concepts:

• A path from X to Y is a sequence of nodes and edges
such that the start and end nodes are X and Y , respec-
tively.
• A conditioning set L is the set of nodes we condition

on (it can be empty).
• Conditioning on a non-collider along a path blocks that

path.
• A collider along a path blocks that path. However,

conditioning on a collider (or any of its descendants)
unblocks that path.

With these definitions out of the way, we call two nodes X
and Y d-separated by L if conditioning on all members in
L blocks all paths between the two nodes. To illustrate how
d-separation works in practice, we apply it to the DAG shown
in Figure 5. First, note that there are no marginal independen-
cies; this means that without blocking nodes by conditioning
on them, any two nodes are connected by a path. For example,
there is a path going from X to Y through Z, and there is a
path from V to U going through Y and W.

However, there are a number of conditional independencies.
For example, X and Y are conditionally independent given Z.
Why? There are two paths from X to Y: one through Z and
one through W. However, since W is a collider on the path
from X to Y , the path is already blocked. The only unblocked
path from X to Y is through Z, and conditioning on it therefore
blocks all remaining open paths. Additionally conditioning
on W would unblock one path, and X and Y would again be
associated.

So far, we have implicitly assumed that conditional
(in)dependencies in the graph correspond to conditional
(in)dependencies between variables. We make this assump-
tion explicit now. In particular, note that d-separation provides
us with an independence model yG defined on graphs. To

X

Z

W

Y

V

U

Figure 5. DAG to practice d-separation on, see main text.

connect this to our standard probabilistic independence model
yP defined on random variables, we assume the following
Markov property:

X yG Y | Z =⇒ X yP Y | Z . (1)

In words, we assume that if the nodes X and Y are d-separated
by Z in the graph G, the corresponding random variables X
and Y are conditionally independent given Z. This implies
that all conditional independencies in the data are represented
in the graph. For example, the graph X → Y → Z combined
with the Markov property implies that the variables X, Y , and
Z are all marginally dependent, but that X is conditionally
independent of Y given Z. Moreover, Equation (1) implies
(and is implied by) the following factorization of the joint
probability distribution over all variables:

p(X1, X2, . . . , Xn) =

n∏
i=1

p(Xi | paG(Xi)) , (2)

where paG(Xi) denotes the parents of the node Xi in graph G
(see Peters, Janzing, & Schölkopf, 2017, p. 101). A node X
is a parent of a node Y if there is an arrow from X to Y; for
example, X is a parent of W in the graph shown in Figure
5. A node Y is a descendant of a node X if there exists a
directed path from node X to Y; for example, V , W, and U
are descendants of Y in the graph shown in Figure 5, but Z
and X are not. The above factorization implies that a node X
is independent of its non-descendants given its parents.

d-separation is an extremely powerful tool. Until now, how-
ever, we have used DAGs only to visualize (conditional) inde-
pendencies. We do not merely want to see the world, but also
change it; this requires a notion of intervention. In the next
section, we go beyond seeing to doing.

Ejemplos: X á Y ∣ Z (i.e., X y Y están Z separados), X á Y ∣W ,
X á Y ∣ {Z ,W }.



DAGs: Independencia Condicional en Grafos y
Probabiĺıstica

Hasta ahora hemos descrito la noción de independencia
condicional en grafos.

Esta se caracteriza con el concepto de d-separación.

Para usarlo como modelo probabiĺıstico suponemos que:
independencia condicional en grafos → independencia
condicional probabiĺıstica.
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Cómo calcular el efecto de intervenciones
Efectos Causales de Intervenciones
Variables Codeterminadas (confounded)

Introducción

Hasta este punto los DAGs representan independencias
(dependencias) condicionales entre variables.

Ahora suponemos que la dirección de los enlaces representa
causalidades directas.

Por ahora no nos vamos a preguntar como se obtuvo el DAG
(usando modelos estad́ısticos o modelos estructurales
causales).

Un intervención es fijar X = x (para todas las unidades) y lo
denotamos por do(X = x).
Graficamente se eliminan todos los enlaces que apuntan a X

En general vamos a decir que X causa a Y si al fijar X = x
(i.e., Y condicional a do(X = x)), Y y X son marginalmente
dependientes (i.e., en el grafo manipulado).

Universidad de los Andes y Quantil Fundamentos Causalidad



DAGs de Intervenciones

CAUSAL INFERENCE 5

Doing

From this section on, we are willing to interpret DAGs
causally. As Dawid (2010) warns, this is a serious step. In
merely describing conditional independencies — seeing —
the arrows in the DAG played a somewhat minor role, being
nothing but “incidental construction features supporting the
d-separation semantics” (Dawid, 2010, p. 66). In this section,
we endow the DAG with a causal meaning and interpret the
arrows as denoting direct causal effects. What is a causal
effect? Following Pearl and others, we take an interventionist
position and say that a variable X has a causal influence on Y
if changing X leads to changes in (the distribution of) Y . This
position is a very useful one in practice, but not everybody
agrees with it (Cartwright, 2007, ch. 6).

There are two principal ways how one might arrive at a DAG.
First, one could try to learn it from data; this is known as
causal discovery (e.g., Spirtes & Zhang, 2016). Second, one
might posit a Structural Causal Model based on theory and
an understanding of the problem one is modeling. From a
SCM, a DAG follows; we will touch on this in a later section.
Here, we assume that we have arrived at a causal DAG, and
show what this enables us to do. Specifically, Figure 6 shows
the observational DAGs from ealier (top row) as well as the
manipulated DAGs (bottom row) where we have intervened
on the variable X, that is, set the value of the random variable
X to a constant x. Setting the value of X = x cuts all incoming
causal arrows. This is because the value of X is determined
only by the intervention, not by any other factors.
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Figure 6. Seeing: DAGs are used to encode conditional inde-
pendencies. The first three DAGs encode the same associa-
tions. Doing: DAGs are causal. All of them encode distinct
causal assumptions.

As is easily verified with d-separation, the first three graphs in
the top row encode the same conditional independence struc-
ture. This implies that we cannot distinguish them using only
observational data. Interpreting the edges causally, however,
we see that the DAGs have a starkly different interpretation.
The bottom row makes this apparent by showing the result
of an intervention on X. In the leftmost causal DAG, Z is on
the causal path from X to Y , and intervening on X therefore

influences Y through Z. In the DAG next to it, Z is on the
causal path from Y to X, and so intervening on X does not
influence Y . In the third DAG, Z is a common cause and —
since there is no other path from X to Y — intervening on X
does not influence Y . For the collider structure in the right-
most DAG, intervening on X does not influence Y because
there is no unblocked path from X to Y . Note that we assume
that the DAG adequately captures all causal relations, which
implies that there is no unobserved confounding.

To make the distinction between seeing and doing, Pearl in-
troduced the do-operator. While p(Y | X = x) denotes the
observational distribution, which corresponds to the process
of seeing, p(Y | do(X = x)) corresponds to the interventional
distribution, which corresponds to the process of doing. The
former describes which values Y would likely take on when
X happened to be x, while the latter describes which values Y
would likely take on when X would be set to x.

Computing Causal Effects

P(Y | do(X = x)) describes the causal effect of X on Y , but
how do we compute it? Actually doing the intervention might
be unfeasible or unethical; side-stepping actual interventions
and still getting at causal effects is the whole point of causal
inference. We want to learn causal effects from observational
data, and so all we have is the observational DAG. The causal
quantity, however, is defined on the manipulated DAG. Conse-
quently, we need to build a bridge between the observational
DAG and the manipulated DAG, and we do this by making
two assumptions.

First, we assume that interventions are local. This means
that if I set X = x, then this only influences the variable
X, with no other direct influence on any other variable. Of
course, intervening on X will influence other variables, but
only through X, as a side-effect of the intervention itself. In
colloquial terms, we do not have a “fat hand” (e.g., Scheines,
2005), but act like a surgeon precisely targeting only a very
specific part of the DAG.

Second, we assume that the mechanism by which variables in-
teract do not change through interventions; that is, the mecha-
nism by which a cause brings about its effects does not change
whether this occurs naturally or by intervention (e.g., Pearl,
Glymour, & Jewell, 2016, p. 56).

With these two assumptions in hand, further note that p(Y |
do(X = x)) can be understood as the observational dis-
tribution in the manipulated DAG — which we denote as
pm(Y | X = x) — that is, in the DAG where we set X = x.
This is because after doing the intervention (which catapults
us into the manipulated DAG, where all arrows pointing to
the node we intervened on are cut), all that is left for us to do
is to see its effect. Observe that the leftmost and rightmost

Los primeros tres DAGs (panel superios) revelan la misma
estructura de dependencias. Imposible diferenciar entre ellos
con datos observacionales.

Interpretados de formal causal estos tres DAGs representan
formas de causalidad muy distintas.

Los DAGs impĺıcitamente suponen que no hay variables
confounding (i.e., variables omitidas).



DAGs de Intervenciones: Observaciones

Una intervención es distinto a condiconar.

En el primer caso se fija X = x (todas las observaciones o la
población) y nos preguntamos que pasa con la distribución de
Y

En el segundo caso miramos la parte de los datos (o
población) que tiene X = x y nos preguntamos como es la
distribucion de Y condicional a X .

La primera es una pregunta que no se resuelve con análisis
estad́ıstico. Necesita hipótesis adicionales:

1 Los enlaces dirigidos representan causalidades directas.
2 Una intervencion tiene un efecto local al bloquear todos los

efectos de las demás variables a través de X .

La segunda es pura estad́ıstica.

Los DAGs son simplemente una forma de representar esas
hipótesis adicionales.
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Considere la representación gráfica:
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University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.

The difference between intervening on a variable and conditioning on that variable should,
hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.

YX

Z
UY

UZ

UX

Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained

YX

Z
UY

UZ

Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales

Este gráfico refleja la relación probabiĺıstica entre las variables
aleatorias.

Condicionar a una variable es observar las demás solo cuando
esa esta fija en cierto valor. No cambia el gráfico (i.e. cambiar
la perspectiva para observar el mundo).
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University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.

The difference between intervening on a variable and conditioning on that variable should,
hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.
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Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained

YX

Z
UY

UZ

Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales

Intervenir X consiste en fijar su valor independiente de todo lo
que pueda afectarla. Cambia el gráfico (cambia el mundo).

De este nuevo gráfico se deduce que intervenir X no tiene
ningún efecto sobre Y .
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Preliminares

Example (Reversión de resultados en subpoblaciones)
CAUSAL INFERENCE 7

seen so far to make sense of one such phenomenon: Simpson’s
Paradox.

Simpson’s Paradox

Suppose two doctors, Dr. Hibert and Dr. Nick, perform a
number of heart surgeries and band-aid removals; Table 1
records their respective performance (taken from Blitzstein &
Hwang, 2014, p. 67). Strikingly, while Dr. Hibert has a higher
success rate than Dr. Nick in surgery (77.8% vs 20%) as well
as band-aid removal (100% vs 90%), his overall sucess rate
is lower (80% vs 83%). While Karl Pearson has been aware
of similar effects already in 1899 (Aldrich, 1995), it was the
article by Simpson (1951) which drew renewed attention to
this fact; Blyth (1972) was the first to call it a “paradox”.
Formally, such a reversal means that:

P(E | D) < P(E | ¬D) (4)
P(E | D, S ) > P(E | ¬D, S ) (5)

P(E | D,¬S ) > P(E | ¬D,¬S ) . (6)

In our case, E denotes success, D denotes whether Dr. Hi-
bert performed the procedure, and S denotes whether the
procedure was heart surgery. The symbol ¬ denotes negation;
for example, ¬D denotes “not Dr. Hibert”, thus referring to
Dr. Nick.

This reversal can be explained by referring to base rates. In
particular, heart surgery is clearly a more difficult procedure
than removing band-aids. Since Dr. Hibert conducts consid-
erably more heart surgeries than Dr. Nick, his overall perfor-
mance suffers. To see how these base rates enter formally,
observe that:

P(E | D) = P(E | D, S ) P(S | D) + P(E | D,¬S ) P(¬S | D)

= 0.778 × 0.90 + 1.00 × 0.10

= 0.80 .

The weights P(S | D) and P(¬S | D) constitute the base rates;
a similar calculation can be done for Dr. Nick. Observe that
his weights are reversed, that is, Dr. Nick performs consid-
erably more band-aid removals — P(¬S | ¬D) = 0.90 —
than heart surgeries — P(S | ¬D) = 0.10. By computing the
overall performance we lose information about which doctor
performs which medical procedure how frequently, opening
up the possibility for a reversal.

As demonstrated above, such a reversal can be intuitively ex-
plained by referring to base rates. Why call this a “paradox”?
Following Pearl (2014), I believe it is useful to distinguish
between Simpson’s reversal and Simpson’s paradox. The
former refers to situations such as the one explained above.
The latter refers to a “psychological phenomenon that evokes
surprise and disbelief” (Pearl, 2014, p. 9). Such surprise and

Table 1
Dr. Hibert outperforms Dr. Nick both in surgery and band-aid, yet his
overall performance is worse.

Dr. Hibert Dr. Nick
Surgery Band-Aid Surgery Band-Aid

Successes 70 10 2 81
Failures 20 0 8 9
Success Rate 77.8% 100% 20% 90%
Overall Success Rate 80% 83%

disbelief is easily evoked when reading Lindley and Novick
(1981), who studied contingency tables not about doctors and
surgery, but about treatment and sex. I provide a different,
but similarly illustrative example here (see also Pearl et al.,
2016, ch. 1). Suppose you observe N = 700 patients who
either choose to take the treatment drug or not; note that this
is not a randomized control trial. Table 2 shows the number
of recovered patients split across sex (taken from Pearl et
al., 2016, p. 2). Observe that more men as well as more
women recover when taking the treatment (93% and 73%)
compared to when not taking the treatment (87% and 69%).
And yet, when taken together, fewer patients who took the
treatment recovered (78%) compared to patients who did not
take the treatment (83%). This is puzzling — should a doctor
prescribe the treatment or not? Clearly, the answer has impor-
tant real-world ramifications. Yet Lindley and Novick (1981)
showed that there is no purely statistical criterion which al-
lows us to decide whether to prescribe or not prescribe the
treatment. While the authors suggested that exchangeability,
a technical condition referring to sequences of random vari-
ables, provides an answer, subsequent literature showed that
one instead needs to rely on explicit causal knowledge (e.g.,
Hernán, Clayton, & Keiding, 2011).

In particular, to decide whether to prescribe treatment or not
based on the data in Table 2, we need to compute the causal
effect that the treatment has on recovery. As a first step, we
draw the causal DAG. Suppose we know that women are more
likely to take the treatment, that being a woman has an effect
on recovery more generally, and that the treatment has an
effect on recovery. Moreover, we know that the treatment
cannot cause sex. This is a trivial yet crucial observation —
it is impossible to express this in purely statistical language.
One of the reasons why causal DAGs are such powerful tools
is because they allow us to formalize such assumptions; the
graph in Figure 7 makes explicit that sex (S ) is a common
cause of both treatment (T ) and recovery (R). We denote
S = 1 as being female, T = 1 as having chosen treatment,
and R = 1 as having recovered. The left DAG in Figure 7 is
observational while the right DAG indicates the intervention
do(T ), that is, forcing every patient to either take the treatment

Ser exitoso en la cirugias es más dif́ıcil lo que afecta el
resultado global del Dr. Hibert.
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smoke get higher grades, on average, than nonsmokers get. But when we take into account
the students’ age, we might find that, in every age group, smokers get lower grades than
nonsmokers get. Then, if we take into account both age and income, we might discover that
smokers once again get higher grades than nonsmokers of the same age and income. The
reversals may continue indefinitely, switching back and forth as we consider more and more
attributes. In this context, we want to decide whether smoking causes grade increases and in
which direction and by how much, yet it seems hopeless to obtain the answers from the data.

In the classical example used by Simpson (1951), a group of sick patients are given the
option to try a new drug. Among those who took the drug, a lower percentage recovered than
among those who did not. However, when we partition by gender, we see that more men taking
the drug recover than do men are not taking the drug, and more women taking the drug recover
than do women are not taking the drug! In other words, the drug appears to help men and
women, but hurt the general population. It seems nonsensical, or even impossible—which is
why, of course, it is considered a paradox. Some people find it hard to believe that numbers
could even be combined in such a way. To make it believable, then, consider the following
example:

Example 1.2.1 We record the recovery rates of 700 patients who were given access to the
drug. A total of 350 patients chose to take the drug and 350 patients did not. The results of the
study are shown in Table 1.1.

The first row shows the outcome for male patients; the second row shows the outcome for
female patients; and the third row shows the outcome for all patients, regardless of gender.
In male patients, drug takers had a better recovery rate than those who went without the drug
(93% vs 87%). In female patients, again, those who took the drug had a better recovery rate
than nontakers (73% vs 69%). However, in the combined population, those who did not take
the drug had a better recovery rate than those who did (83% vs 78%).

The data seem to say that if we know the patient’s gender—male or female—we can pre-
scribe the drug, but if the gender is unknown we should not! Obviously, that conclusion is
ridiculous. If the drug helps men and women, it must help anyone; our lack of knowledge of
the patient’s gender cannot make the drug harmful.

Given the results of this study, then, should a doctor prescribe the drug for a woman? A
man? A patient of unknown gender? Or consider a policy maker who is evaluating the drug’s
overall effectiveness on the population. Should he/she use the recovery rate for the general
population? Or should he/she use the recovery rates for the gendered subpopulations?

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No drug

Men 81 out of 87 recovered (93%) 234 out of 270 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of 80 recovered (69%)
Combined data 273 out of 350 recovered (78%) 289 out of 350 recovered (83%)

Debemos o no recomendar la droga? La explicación anterior no
ofrece una respuesta.
Los datos sugieren que si conocemos el sexo de las personas,
debemos recomendar tomar la droga. Pero si no lo conocemos,
no!
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which direction and by how much, yet it seems hopeless to obtain the answers from the data.

In the classical example used by Simpson (1951), a group of sick patients are given the
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than nontakers (73% vs 69%). However, in the combined population, those who did not take
the drug had a better recovery rate than those who did (83% vs 78%).

The data seem to say that if we know the patient’s gender—male or female—we can pre-
scribe the drug, but if the gender is unknown we should not! Obviously, that conclusion is
ridiculous. If the drug helps men and women, it must help anyone; our lack of knowledge of
the patient’s gender cannot make the drug harmful.

Given the results of this study, then, should a doctor prescribe the drug for a woman? A
man? A patient of unknown gender? Or consider a policy maker who is evaluating the drug’s
overall effectiveness on the population. Should he/she use the recovery rate for the general
population? Or should he/she use the recovery rates for the gendered subpopulations?
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En esta ejemplo tenemos 343 mujeres y 357 hombres.

Es imposible racionalizar este fenómeno sin apelar a alguna
teoŕıa (i.e., hipótesis):
Suponga que el estrógeno reduce la efectividad de la droga.
Sin embargo, supongamos que esta es efectiva tanto en
hombres como mujeres.



Paradoja de Simpson

Para evaluar el efecto de la droga sobre la población
quisieramos eveluar que sucede con la población si todos
toman la droga y compararla contra el resultado en el que
nadie en la población toma la droga,

Evidentemente esto no es lo que observamos en el
experimento.

Podŕıamos estimar ingenuamente el efecto si elegimos
aleatoriamente una persona que tomo la droga y la
comparamos contra una persona elegida aleatoriamente que
no tomo la droga y repetimos varias veces esto y
promediamos.

Como es más probable elegir una mujer en el primer caso (i.e.,
son más mujeres las que toman la droga) y un hombre en el
segundo caso, parece a nivel poblacional que la droga no
funciona.

Sin embargo esta forma de estimar el efecto poblaciónal esta
fundamentalmente errada.
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Cómo calcular el efecto de intervenciones

Hipótesis:
1 Los enlaces dirigidos representan causalidades directas.
2 Las intervenciones son locales y una intervención bloquea

todos los enlaces indirectos (entrantes) que pasan por X .

Estas dos hipótesis sugieren que:
p(Y ∣ do(X = x)) = pm(Y ∣ X = x). Es decir una vez se hace
la intervención el efecto se puede observar en el grafo
manipulado.
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Asociación
Intervenciones

Ejemplo: Helados y Crimen
Ejemplo: Paradoja de Simpson
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University of Winnipeg study that showed that heavy text messaging in teens was correlated
with “shallowness.” Media outlets jumped on this as proof that texting makes teenagers more
shallow. (Or, to use the language of intervention, that intervening to make teens text less
would make them less shallow.) The study, however, proved nothing of the sort. It might be
the case that shallowness makes teens more drawn to texting. It might be that both shallowness
and heavy texting are caused by a common factor—a gene, perhaps—and that intervening on
that variable, if possible, would decrease both.

The difference between intervening on a variable and conditioning on that variable should,
hopefully, be obvious. When we intervene on a variable in a model, we fix its value. We change
the system, and the values of other variables often change as a result. When we condition on a
variable, we change nothing; we merely narrow our focus to the subset of cases in which the
variable takes the value we are interested in. What changes, then, is our perception about the
world, not the world itself.
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Figure 3.1 A graphical model representing the relationship between temperature (Z), ice cream sales
(X), and crime rates (Y)

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales
example, with X as ice cream sales, Y as crime rates, and Z as temperature. When we inter-
vene to fix the value of a variable, we curtail the natural tendency of that variable to vary
in response to other variables in nature. This amounts to performing a kind of surgery on
the graphical model, removing all edges directed into that variable. If we were to intervene
to make ice cream sales low (say, by shutting down all ice cream shops), we would have
the graphical model shown in Figure 3.2. When we examine correlations in this new graph,
we find that crime rates are, of course, totally independent of (i.e., uncorrelated with) ice
cream sales since the latter is no longer associated with temperature (Z). In other words, even
if we vary the level at which we hold X constant, that variation will not be transmitted to
variable Y (crime rates). We see that intervening on a variable results in a totally different
pattern of dependencies than conditioning on a variable. Moreover, the latter can be obtained

YX

Z
UY

UZ

Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales

Este gráfico refleja la relación probabiĺıstica entre las variables
aleatoria.

Condicionar a una variable es observar las demás solo cuando
esa esta fija en cierto valor. No cambia el gráfico (i.e. cambiar
la perspectiva para observar el mundo).

Universidad de los Andes y Quantil Fundamentos Causalidad



Ejemplo: Helados y Crimen

Considere la representación gráfica:
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variable Y (crime rates). We see that intervening on a variable results in a totally different
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Figure 3.2 A graphical model representing an intervention on the model in Figure 3.1 that lowers ice
cream sales

Intervenir X consiste en fijar su valor independiente de todo lo
que pueda afectarla. Cambia el gráfico (cambia el mundo).

De este nuevo gráfico se deduce que intervenir X no tiene
ningún efecto sobre Y .



Condicionar vs. Intervenir

Condicionar es restringirse al estudio de los ejemplos o la
parte de la población que tiene ciertas caracteŕısticas.

Intervenir es cambiar un valor de alguna variable para todo los
ejemplos o población (i.e., una manipulación de la
dependencia entre las variables).

Para representar una condicional y diferenciarla de una
intervención usamos la siguiente notación: P(Y ∣ X = x) y
P(Y ∣ do(X = x)).
Suponemos que P(Y ∣ do(X = x)) = Pm(Y ∣ X = x) donde Pm

es la distribución de probababilidad del modelo gráfico
manipulado.

En muchas ocasiones (cuando X es binaria) estamos
interesados en el efecto casual promedio:

P(Y = y ∣ do(X = 1)) − P(Y = y ∣ do(X = 0)) (1)



Cálculo de Efectos Causales

Consideremos el caso de la Paradoja de Simpson (i.e., primera
versión).
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directly from the data set, using the procedures described in Part One, while the former varies
depending on the structure of the causal graph. It is the graph that instructs us which arrow
should be removed for any given intervention.

In notation, we distinguish between cases where a variable X takes a value x naturally and
cases where we fix X = x by denoting the latter do(X = x). So P(Y = y|X = x) is the probabil-
ity that Y = y conditional on finding X = x, while P(Y = y|do(X = x)) is the probability that
Y = y when we intervene to make X = x. In the distributional terminology, P(Y = y|X = x)
reflects the population distribution of Y among individuals whose X value is x. On the other
hand, P(Y = y|do(X = x)) represents the population distribution of Y if everyone in the popu-
lation had their X value fixed at x. We similarly write P(Y = y|do(X = x), Z = z) to denote the
conditional probability of Y = y, given Z = z, in the distribution created by the intervention
do(X = x).

Using do-expressions and graph surgery, we can begin to untangle the causal relationships
from the correlative. In the rest of this chapter, we learn methods that can, astoundingly, tease
out causal information from purely observational data, assuming of course that the graph con-
stitutes a valid representation of reality. It is worth noting here that we are making a tacit
assumption here that the intervention has no “side effects,” that is, that assigning the value x
for the valuable X for an individual does not alter subsequent variables in a direct way. For
example, being “assigned” a drug might have a different effect on recovery than being forced
to take the drug against one’s religious objections. When side effects are present, they need to
be specified explicitly in the model.

3.2 The Adjustment Formula

The ice cream example represents an extreme case in which the correlation between X and
Y was totally spurious from a causal perspective, because there was no causal path from X
to Y . Most real-life situations are not so clear-cut. To explore a more realistic situation, let us
examine Figure 3.3, in which Y responds to both Z and X. Such a model could represent, for
example, the first story we encountered for Simpson’s paradox, where X stands for drug usage,
Y stands for recovery, and Z stands for gender. To find out how effective the drug is in the pop-
ulation, we imagine a hypothetical intervention by which we administer the drug uniformly
to the entire population and compare the recovery rate to what would obtain under the com-
plementary intervention, where we prevent everyone from using the drug. Denoting the first
intervention by do(X = 1) and the second by do(X = 0), our task is to estimate the difference

P(Y = 1|do(X = 1)) − P(Y = 1|do(X = 0)) (3.1)

YX

Z

UZ

UX UY

Figure 3.3 A graphical model representing the effects of a new drug, with Z representing gender, X
standing for drug usage, and Y standing for recovery

Si intervenimos X = x se obtiene el nuevo diagrama.



Cálculo de Efectos Causales

Intervención X = x .
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which is known as the “causal effect difference,” or “average causal effect” (ACE). In general,
however, if X and Y can each take on more than one value, we would wish to predict the
general causal effect P(Y = y|do(X = x)), where x and y are any two values that X and Y can
take on. For example, x may be the dosage of the drug and y the patient’s blood pressure.

We know from first principles that causal effects cannot be estimated from the data set
itself without a causal story. That was the lesson of Simpson’s paradox: The data itself was
not sufficient even for determining whether the effect of the drug was positive or negative. But
with the aid of the graph in Figure 3.3, we can compute the magnitude of the causal effect from
the data. To do so, we simulate the intervention in the form of a graph surgery (Figure 3.4)
just as we did in the ice cream example. The causal effect P(Y = y|do(X = x)) is equal to the
conditional probability Pm(Y = y|X = x) that prevails in the manipulated model of Figure 3.4.
(This, of course, also resolves the question of whether the correct answer lies in the aggregated
or the Z-specific table—when we determine the answer through an intervention, there’s only
one table to contend with.)
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Figure 3.4 A modified graphical model representing an intervention on the model in Figure 3.3 that
sets drug usage in the population, and results in the manipulated probability Pm

The key to computing the causal effect lies in the observation that Pm, the manipulated
probability, shares two essential properties with P (the original probability function that pre-
vails in the preintervention model of Figure 3.3). First, the marginal probability P(Z = z) is
invariant under the intervention, because the process determining Z is not affected by remov-
ing the arrow from Z to X. In our example, this means that the proportions of males and
females remain the same, before and after the intervention. Second, the conditional proba-
bility P(Y = y|Z = z,X = x) is invariant, because the process by which Y responds to X and
Z,Y = f (x, z, uY), remains the same, regardless of whether X changes spontaneously or by
deliberate manipulation. We can therefore write two equations of invariance:

Pm(Y = y|Z = z,X = x) = P(Y = y|Z = z,X = x) and Pm(Z = z) = P(Z = z)

We can also use the fact that Z and X are d-separated in the modified model and are, there-
fore, independent under the intervention distribution. This tells us that Pm(Z = z|X = x) =
Pm(Z = z) = P(Z = z), the last equality following from above. Putting these considerations
together, we have

P(Y = y|do(X = x)

= Pm(Y = y|X = x) (by definition) (3.2)

Si suponemos que no existen efectos secundarios de la
intervención sobre otras variables,
Pm(Y = y ∣ Z = z ,X = x) = P(Y = y ∣ Z = z ,X = x) y
Pm(Z = z) = P(Z = z) entonces podemos calcular el efecto
causal P(Y = y ∣ do(X = x)).



Cálculo de Efectos Causales

P(Y = y ∣ do(X = x)) = Pm(Y = y ∣ X = x) por definición.

Pm(Y = y ∣ X = x) = (2)

∑
z

Pm(Y = y ∣ X = x ,Z = z)Pm(Z = z ∣ X = x) (3)

= ∑
z

Pm(Y = y ∣ X = x ,Z = z)Pm(Z = z) (4)

= ∑
z

P(Y = y ∣ X = x ,Z = z)P(Z = z) (5)

Esto se conoce como el ajuste por Z .
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Example (Paradoja de Simpson I)

Sea X = 1 tomar la droga, Y = 1 recuperarse y Z = 1 ser hombre.
Utiliando la tabla de frecuencias observadas:

P(Y = 1 ∣ do(X = 1)) = 0,832 (6)

P(Y = 1 ∣ do(X = 0)) = 0,7818 (7)

Luego P(Y = 1 ∣ do(X = 1)) −P(Y = 1 ∣ do(X = 0)) = 0,0502. Esto
lo podemos intepretar como la diferencia en la fracción de las
personas que se recuperan si todos toman la droga menos la
fracción de los que se recuperan si nadie toma la droga.

Obsérvese que de haberse conducido un experimento aleatorio
controlado para conocer el efecto de la droga, el diagrama
resultante seŕıa como el diagrama intervenido.
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Example (Paradoja de Simpson II)

En este caso una intervención no cambia el grafo (i.e., el grafo
tendŕıa la misma forma que si se hubiera hecho un experimento
aleatorio controlado).
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population data P(Y = 1|X = 1) and P(Y = 1|X = 0), from which we might (falsely) conclude
that the drug has a negative effect overall.

These simple examples might give readers the impression that whenever we face the
dilemma of whether to condition on a third variable Z, the adjustment formula prefers the
Z-specific analysis over the nonspecific analysis. But we know this is not so, recalling
the blood pressure example of Simpson’s paradox given in Table 1.2. There we argued that
the more sensible method would be not to condition on blood pressure, but to examine the
unconditional population table directly. How would the adjustment formula cope with
situations like that?

Z

X Y

Figure 3.5 A graphical model representing the effects of a new drug, with X representing drug usage, Y
representing recovery, and Z representing blood pressure (measured at the end of the study). Exogenous
variables are not shown in the graph, implying that they are mutually independent

The graph in Figure 3.5 represents the causal story in the blood pressure example. It is the
same as Figure 3.4, but with the arrow between X and Z reversed, reflecting the fact that the
treatment has an effect on blood pressure and not the other way around. Let us try now to
evaluate the causal effect P(Y = 1|do(X = 1)) associated with this model as we did with the
gender example. First, we simulate an intervention and then examine the adjustment formula
that emanates from the simulated intervention. In graphical models, an intervention is simu-
lated by severing all arrows that enter the manipulated variable X. In our case, however, the
graph of Figure 3.5 shows no arrow entering X, since X has no parents. This means that no
surgery is required; the conditions under which data were obtained were such that treatment
was assigned “as if randomized.” If there was a factor that would make subjects prefer or reject
treatment, such a factor should show up in the model; the absence of such a factor gives us the
license to treat X as a randomized treatment.

Under such conditions, the intervention graph is equal to the original graph—no arrow need
be removed—and the adjustment formula reduces to

P(Y = y|do(X = x)) = P(Y = y|X = x),

which can be obtained from our adjustment formula by letting the empty set be the element
adjusted for. Obviously, if we were to adjust for blood pressure, we would obtain an incorrect
assessment—one corresponding to a model in which blood pressure causes people to seek
treatment.

3.2.1 To Adjust or not to Adjust?

We are now in a position to understand what variable, or set of variables, Z can legitimately be
included in the adjustment formula. The intervention procedure, which led to the adjustment
formula, dictates that Z should coincide with the parents of X, because it is the influence of

Como el grafo no cambia:
P(Y = y ∣ do(X = x)) = Pm(Y = y ∣ X = x) = P(Y = y ∣ X = x), lo
cual explica que se use las frecuencias codicionales (el efecto
agregado observado).



Introducción
Modelos Gráficos Dirigidos Aćıclicos: DAGs

Asociación
Intervenciones

Ejemplo: Helados y Crimen
Ejemplo: Paradoja de Simpson
Cómo calcular el efecto de intervenciones
Efectos Causales de Intervenciones
Variables Codeterminadas (confounded)

Varibles codeterminadas (confunded) y Criterio de la
puerta trasera

Decimos que X y Y están codeterminadas si
p(Y ∣ do(X = x)) ≠ P(Y ∣ X = x).
Por ejemplo: en la dos figuras del centro de la figura 13.

El sesgo por colisionador es un caso particular.

Usamos el criterio de puerta cerrada para determinar cuando
hay codeterminación en un DAG.

Este criterio no agota toda las posibilidades.
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