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Abstract. Risk adjustment is vital in health policy design. Risk adjustment defines the
annual capitation payments to health insurers and is a key determinant of insolvency risk
for health insurers. In this study we compare the current risk adjustment formula used by
Colombia’s Ministry of Health and Social Protection against alternative specifications that
adjust for additional factors. We show that the current risk adjustment formula, which
conditions on demographic factors and their interactions, can only predict 30% of total
health expenditures in the upper quintile of the expenditure distribution. We also show
the government’s formula can improve significantly by conditioning ex ante on measures
indicators of 29 long-term diseases. We contribute to the risk adjustment literature by
estimating machine learning based models and showing non-parametric methodologies (e.g.,
boosted trees models) outperform linear regressions even when fitted in a smaller set of
regressors.
Keywords. Risk adjustment; Diagnostic related groups; Risk selection; Machine learning.

1 Introduction

The last three decades have seen several restructuring of public health systems around
the world. In Colombia, law 100 of 1993, transformed the public health system into a com-
petitive insurance market with three key components to it: 1) a benefits package (POS)
that defines all the services, procedures, and medications each enrollee has the right to
claim; 2) a group of health insurers (EPS) who configure a network of health service
providers in charge of delivering all services listed in the benefits package; and 3) a mech-
anism for the payment of such services that controls for enrollee heterogeneity and risk.
Enrollees’ contributions configure a cross subsidies system that helps insurers mitigate
their financial risk and reduce the incentives to “cream skim” [11]. Monthly risk premium
fees are collected from all enrollees with formal employment and then redistributed in
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form of capitation payments (UPC) to every health insurer in the market. The redistri-
bution is based on the specific risk profile of the insurer’s population of enrollees. The
goal of a risk-adjustment mechanism is to reduce annual health expenditure uncertainty
as much as possible by controlling for variables that are not subject to manipulation by
health insurers. In this document, we propose a new risk-adjustment formula based on
information available to the Ministry of Health. We propose adjusting for indicators of
29 long-term disease groups and indicators of hospitalizations, consults with specialists
and admissions to the intensive care unit. Given their predictive ability, we use machine
learning algorithms to predict annual health expenditures and show that models based
on machine learning techniques predict more accurately the annual health expenditure of
individuals in an specific quintile of the health expenditure distribution.

2 Risk adjustment literature

In a study for the Colombian health sector, [8] propose a new way to calculate the UPC
by including additional risk factors describing the morbidity distribution of the enrollee
population. The authors show that an ex ante morbidity risk adjustment using these
long-term disease groups approximates better the empirical distribution of annual health
expenditures and, thus, reduces capital requirements of health insurers in the contributory
system. Other studies have shown that interactions between diagnoses and demographic
variables improve the predictions of models for annual health expenditure. For instance,
[10] compare two categorizations of ICD-9 ambulatory diagnoses and show that a model
adjusted on demographics and diagnoses predicts more accurately the per capita health
expenditure in the Medicare system in the United States. [3] also find that an index of
weighted ICD-9 codes explain 10.66% of the variation in 1993 annual health expenditures
in the United States. More recently, machine learning techniques have incurred in the
field of health risk adjustment. [1] in a study for Germany, estimate a regression tree to
find all relevant interactions between regressors, and then include such interactions in a
linear regression model. The authors show including interactions from a machine learning
algorithm improves the R2 of the lineal regression by 10 percentage points compared to
the government formula. [5] argue the non linear relation between risk factors is usually
very difficult to capture with linear models. In that matter, the authors estimate a random
forest model to find relevant interactions and patterns in the claims data of Medicare. The
random forest model reaches a R2 of 38% with an standard deviation on 0.008 while the
linear regression model reaches a R2 of 31% with a standard deviation on 0.01.

3 Data and description

To predict the annual health expenditure of enrollees to the contributory system in
Colombia we use the Base de Suficiencia of the Ministry of Health and Social Protection
for the years of 2010 and 2011. We use the demographic characteristics and diagnoses
received by each enrollee during 2010 to predict the annual health expenditure in 2011
adjusted by the number of enrolled days in this year. For each enrollee we observe gender,
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age, municipality of residence, insurer, provider, service cost, and ICD-10 diagnosis 4. We
categorize the municipality of residence in the three payment geographic areas defined
by the National Administrative Department of Statistics (DANE) (urban, normal and
special). ICD-10 diagnoses are grouped in 29 long-term disease pools [2]. Table 1 shows
some descriptive statistics of the cross-sections and the panel of enrollees. During 2010
there were nearly 24 million enrollees in the contributory system and during 2011 this
number increases to 25 million. The intersection of enrollees between these two cross-
sections consists of 13 million people. Notice that the individuals who are active enrollees
in both years have an average enrolled-days weighted health expenditure higher than the
average expenditure in the cross-sections.

Table 1: Comparison of 2010 and 2011 cross-sections with the panel of enrollees
2010 cross-section 2011 cross-section Panel

Number of enrollees 24,354,254 25,695,491 13,652,533

Capitation Payment (UPC) 2010 565,563 732,499

Capitation Payment (UPC) 2011 568,417 695,776

% of enrollees with long-term diseases during 2010 26.03 25.99

% of enrollees with long-term diseases during 2011 26.19 26.17

% of enrollees with long-term diseases in 2010 that upturn in 2011 9.85 7.86

% of enrollees without long-term diseases in 2010 that are diagnosed in 2011 10.01 10.00

Average enrolled days in 2010 306.5 310.8

Average enrolled days in 2011 303.4 311.0

% of enrollees who claim services in 2010 64.14 98.9

% of enrollees who claim services in 2011 64.05 83.2

Note: This table shows some descriptive statistics of the 2010 and 2011 cross-sections of the Base de Suficiencia and the panel

built from their intersection. We report the number of enrollees in each dataset, the UPC (360 ×
∑

i xi/
∑

i di), the percentage

of enrollees with long-term diseases, and the percentage of those whose health condition changes from one year to the other.

We also show the percentage of enrollees who claim at least one health service every year.

For prediction of annual health expenditures and to avoid overfitting problems, we
build two mutually exclusive datasets by randomly selecting 500,000 enrollees each, from
the intersection of 13 million individuals. One dataset is the training set where we will fit
all of our models and the other is the test set where we will compute the fitting measures.

4 Results

In this section we show the out-of-sample fitting metrics for the linear models and the
machine learning based models both the full expenditure distribution as well as for the
upper and lower quintiles of the observed expenditure distribution. To build the models we
take the following individual traits: demographic characteristics (Demog), indicators of
long-term disease groups (Dx) indicators of hospitalizations (H), consults with specialists
(E) and admissions to the intensive care unit (U). The machine learning based models
considered in this research were random forest (RF), boosted trees models (GBM) and
artificial neural network (ANN). All the parameters of these models were obtained using
cross validation. In the case of the RF model, each tree is estimated using a random
subset of predictors of size

√
X, where X is the total number of predictors. As shown

in [6] the RF model is robust to different tuning parameters including the cardinality
of the set of predictors on which each tree in the forest is trained. We find that the

4The 10th revision of the International Statistical Classification of Diseases and Related Health Prob-
lems is a medical classification compiled by World Health Organization
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optimal number of trees is 680, which is close to what other authors have used when
predicting health outcomes with claims data and an imbalanced number of patients in each
diagnosis group [4]. We use the same number of trees for estimating the GBM model. This
model consists of fitting decision trees sequentially unlike the RF model where it is done
simultaneously. Each tree in the GBM is trained on a weighted sample from the previous
tree. The weights are chosen such that observations that the previous tree misclassified
receive a higher weight than those that were correctly classified. Subsequent trees are
also trained on the predictions of previous trees multiplied by a parameter known as
the shrinkage parameter, which helps in the regularization method to avoid overfitting the
data. Cross-validation shows that a relative large shrinkage parameter and a relative small
number of interactions between the variables achieved the best prediction metrics in the
train sample. These parameters differ from what other studies have found including [9],
who use 232 trees in the boosting algorithm to predict health costs using interactions
between ICD-9 codes. For the ANN, we used 5 inner layers and the back-propagation
algorithm to estimate the optimal weight for each predictor in each layer. We use a
regularization method that consists of adding a penalty to the criterion function -the sum
of squared residuals- that is equal to the sum of squared weights multiplied by a “decay”
parameter. The decay of weights is chosen using cross-validation.

In any case, “Two stages” stands for the inclusion of the probability of claiming services
in the variable set, WLS stands for weighted least squares, and “FS” indicates the model
is fitted on the 21 variables resulting from the feature selection procedure.

Table 2: Out-of-sample fitting measures in the full distribution
Parameters Model RMSE MAE PR PR R2

(COP) (COP) annualized non annualized

WLS UPC 3,506,658 720,587 0.896 0.999 1.57

WLS UPC + Dx 3,440,928 694,404 0.892 0.999 5.23

WLS UPC + Dx + H 3,437,175 694,005 0.894 1.000 5.45

WLS UPC + Dx + H + E 3,435,470 691,169 0.892 0.999 5.53

WLS UPC + Dx + H + E + U 3,431,842 688,771 0.892 0.999 5.73

WLS UPC x H x E x U + Dx 3,432,097 683,209 0.893 0.999 5.71

5 + 0.05 ANN Demog + Dx (Two stages) 3,470,597 816,431 1.072 1.203 3.59

5 + 0.05 ANN Demog + Dx + H (Two stages) 3,455,518 785,698 1.058 1.189 4.42

5 + 0.05 ANN FS 3,455,366 774,190 1.064 1.179 4.43

680 RF Demog + Dx + H + E + U (Two stages) 3,607,413 735,027 0.981 1.097 -4.16

680 RF FS 3,465,301 712,820 0.975 1.087 3.88

680 + 3 + 0.1 + 50 GBM Demog + Dx + H + E + U (Two stages) 3,436,299 719,029 0.997 1.111 5.48

680 + 3 + 0.1 + 50 GBM FS 3,431,044 721,168 1.002 1.115 5.77

Note: This table shows the RMSE, MAE, R2, and annualized and non-annualized predictive ratios in the full sample. The first column

shows the parameters with which the machine learning based models were trained. For the neural networks (ANN) the first number

corresponds to the number of neurons in the inner layer and the second is the weight decay parameter. For the random forest model

(RF) the number indicates the number of trees, and for the boosted trees model (GBM) the correspond to the number of trees, the

dimension of variable iteractions, the contraction parameters and the minimum number of observations in non-terminal nodes,

respectively. Two stages indicates the model includes the probability of claiming a service and FS that the model is fitted over the

set of variables chosen using feature selection.WLS stands for weighted least squares. The RMSE and the MAE are reported in 2011

colombian pesos. Authors’ calculations from the Base de Suficiencia.

Table 2 shows two of the most common metrics used to measure accuracy for contin-
uous variables, the root-mean-square error (RMSE) and the mean absolute error (MAE)
(both measure the differences between values predicted and the values actually observed),
coefficient of determination (R2) and predictive ratios (PR) in the full sample are also
presented. Results show linear models, and in particular the current government formula,
tend to underestimate the entire health expenditure distribution by nearly 11%. Underes-
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timation is problematic because it leaves a portion of the health risk unassured. Although
inclusion of an ex ante morbidity risk adjustment with the dummy variables for the 29
long-term diseases reduces the MAE by 30,000 pesos and the RMSE by 60,000 pesos com-
pared to the government formula, the inclusion does generate an increase in the overall
predictive ratio. On the contrary, machine learning models achieve a predictive ratio that
is closer to 1 than the linear models. Notice that models that exceed the predictive ratio
threshold of 1 are not suitable because they are overcompensating all insurers and increas-
ing the health system’s expenditures. By guaranteeing the full sample predictive ratio is
less than or equal to one we are focusing on more efficient redistributions of the current
level of health expenditure. The best model in this table is the boosted trees model that is
fitted over the set of variables chosen through feature selection (GMB FS), which reaches
an annualized predictive ratio of 1.002, a MAE of 721,168 pesos, a RMSE of 3,431,044
pesos and a R2 of 5.77% that outperforms the linear models fitted over the entire set of
regressors5. These results are also consistent with findings in [7] who mention that the
boosting algorithm is able to explain almost 90% of the variance in individual health costs
for the Medicare Prospective Payment System.

Table 3 shows the out-of-sample fitting metrics in the highest quintile of the observed
expenditure distribution. Underestimation in this case increases the insolvency risk of
those insurers with the sickest population of enrollees. Therefore, the criteria to choose
the best model will be the one that achieves the closest to 1 predictive ratio. The neural
network model that includes the probability of claiming a service and the hospitalization
indicator predicts 53% of the non annualized health expenditure and 45% of the annualized
health expenditure in this tail of the distribution. These percentages represent an improve
of 7 percentage points compared to the linear models. The GBM FS model fitted on a
much smaller set of variables is able to predict 50% of total health expenditures which
represents an improve of 5 percentage points relative to the government’s formula. Results
in this table suggest the current government formula (WLS UPC) is little predictive of the
annual health expenditure at the upper tail of the expenditure distribution, only 33.5%.
Results also show the ex ante morbidity risk adjustment using the 29 long-term disease
groups improves by 10 percentage points the government’s formula predictive ratios.

Figure 1 presents the variable relative importance (an average of how many times is
a variable used for the recursive partitioning of the trees) in the GBM FS model. The
most relevant variables for prediction of annual health expenditures are in order: the
probability of claiming a service, the indicator of consults with specialist, the indicator
of hospitalizations, the 45 to 49 age group, and the indicator of urban areas. In relation
to diagnoses categories, the most predictive groups are: cardiovascular diseases, cervical
cancer, hypertension and breast cancer.

4.1 Incentives to risk selection

Overestimation of the annual health expenditure of enrollees in the lower tail of the
observed expenditure distribution generates incentives to risk selection because insurers

5Although for the lower quintile of the observed expenditure distribution in 2011 all the models highly
overestimate the annual health expenditure.
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Table 3: Out-of-sample fitting metrics in the upper quintile of the expenditure distribution
Parameters Model RMSE MAE PR PR

annualized non annualized

WLS UPC 7,749,235 1,920,486 0.291 0.335

WLS UPC + Dx 7,580,659 1,983,269 0.367 0.426

WLS UPC + Dx + H 7,569,594 1,974,414 0.380 0.440

WLS UPC + Dx + H + E 7,565,491 1,963,559 0.388 0.450

WLS UPC + Dx + H + E + U 7,555,009 1,965,934 0.390 0.452

WLS UPC x H x E x U + Dx 7,555,760 1,981,378 0.393 0.456

5 + 0.05 ANN Demog + Dx (Two stages) 7,576,299 2,045,276 0.444 0.517

5 + 0.05 ANN Demog + Dx + H (Two stages) 7,558,045 2,000,360 0.454 0.526

5 + 0.05 ANN FS 7,582,293 1,962,318 0.412 0.474

680 RF Demog + Dx + H + E + U (Two stages) 7,780,452 2,118,572 0.445 0.520

680 RF FS 7,580,672 1,988,824 0.424 0.490

680 + 3 + 0.1 + 50 GBM Demog + Dx + H + E + U (Two stages) 7,532,498 1,988,610 0.436 0.505

680 + 3 + 0.1 + 50 GBM FS 7,517,520 1,961,026 0.430 0.500

Note: This table shows the RMSE, MAE and annualized and non-annualized predictive ratios in the upper quintile of the

observed annual health expenditure distribution for 2011. The models and their parameters as the same as in table (2).

Authors’ calculations from the Base de Suficiencia.
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Figure 1: Variable relative importance in the GBM FS model

will tend to enroll only those individuals whose health expenditure is low but whose
prediction, on which per capita payments are based, is high. In this subsection we study the
incentive to risk selection by comparing the profit generated by those enrollees for which
the models overestimate the annual health expenditure. Table 4 shows the percentage of
enrollees for which the prediction of annual health expenditure is higher than the observed
expenditure ((1/N)

∑N
i=1wiI(ŷi > yi)) and the profit they would generate (

∑N
i=1wi(ŷi −

yi)). In terms of these results, a model is desirable if: (i) the percentage of enrollees and
the percentage of profit with respect to income is similar and (ii) the absolute level of
profit is low compared to the rest of the models.

Linear models generate the lowest profits due to risk selection compared to the rest
of the models. However, the government’s formula is dominated by the linear models
that adjust ex ante for the morbidity distribution of the population of enrollees. The
linear model with indicators of long-term diseases, hospitalization, consult with specialist,
and admission to the intensive care unit, generates 172,051 million pesos of profit by
enrolling individuals for which they overestimate the annual health expenditure. In this
model, there is 5 percentage point difference between the percentage of enrollees and the
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percentage of profits, which is larger than what machine learning based models achieve.
The boosted trees model fitted over the entire set of predictors overestimates the annual
health expenditure for 70% of the population of enrollees, but this percentage of individuals
is responsible for 73% of the system’s profits.

Table 4: Incentives to risk selection
Parameters Model Enrollees (%) Profit ($)* Profit (%)

WLS UPC 70.39 180,046 73.39

WLS UPC + Dx 67.82 173,432 72.32

WLS UPC + Dx + H 65.66 173,464 72.29

WLS UPC + Dx + H + E 64.02 172,739 71.93

WLS UPC + Dx + H + E + U 64.50 172,051 71.92

WLS UPC x H x E x U + Dx 67.52 175,454 71.55

5 + 0.05 ANN Demog + Dx (Two stages) 57.96 234,627 76.19

5 + 0.05 ANN Demog + Dx + H (Two stages) 60.15 224,829 74.62

5 + 0.05 ANN FS 57.01 251,677 76.68

680 RF Demog + Dx + H + E + U (Two stages) 67.85 198,359 73.97

680 RF FS 69.77 191,198 72.33

680 + 3 + 0.1 + 50 GBM Demog + Dx + H + E + U (Two stages) 70.53 196,517 72.38

680 + 3 + 0.1 + 50 GBM FS 70.21 197,569 72.58

Note: This table shows the percentage of enrollees for which models overestimate the annual health expenditure

(1/N)
∑N

i=1 wiI(ŷi > yi), the profit they would generate
∑N

i=1 wi(ŷi − yi), and the profit as percentage of income.

Authors’ calculations from the Base de Suficiencia.

5 Conclusions

We show the current risk adjustment formula that conditions on sociodemographic
factors and their interactions, can only predict 30% of total health expenditures in the
upper quintile of the expenditure distribution. We show the government’s formula can
improve significantly by conditioning ex ante for any measure of the morbidity distribution
of enrollees such as the indicators of 29 long-term diseases, going from a 30% to a 40%
prediction of total annual health expenditure in the upper tail of the distribution. Our
main finding is that non parametric models based on machine learning techniques like
the boosted trees model, outperforms by 5 percentage points the predictive ratio, by
40,000 pesos the RMSE and by 20,000 the MAE in the last quintile of the expenditure
distribution, compared to the government’s formula. This document evidences how the
risk adjustment policy in Colombia can redistribute resources more efficiently by adjusting
for the enrollees’ health condition ex ante and by using non parametric specifications that
capture the non linear relation between risk factors better than the linear models.
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