# - quantil -

Felipe Suárez, Álvaro Riascos

25 de abril de 2017



# Contenido

- 1. Motivación
- 2. k-Medias
  - Algoritmos
  - Implementación
- 3. Definición
- 4. Motivación
- 5. Aproximación
- 6. Implementación





## Problema

Considere la siguiente imagen médica.







## Problema

## Considere la siguiente imagen médica.







## Considere la siguiente imagen médica.











Hugo Steinhaus, 1887 - 1972





Hugo Steinhaus, 1887 - 1972

BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES CL. III — VOL. IV, NO. 12, 1956

#### MATHÉMATIQUE

Sur la division des corps matériels en parties <sup>1</sup>

H. STEINHAUS Présenté le 19 Octobre 1956

Un corps Q est, par définition, une répartition de matière dans l'espace, donnée par une fonction f(P); on appelle cette fonction la densité du corps en question; elle est définie pour tous les points P de l'espace; elle est non-négative et mesurable. On suppose que l'ensemble caractéristique du corps E=E,  $f\{P(P)>0\}$  est borné et de mesure positive; on suppose aussi que l'intégrale de f(P) sur E est finie : c'est la masse du corps Q. On considère comme identiques deux corps dont les densités sont égales à un ensemble de mesure nulle près.

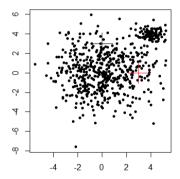




#### Definición

El método de agrupamiento (clustering) k-medias es un procedimiento de clasificación no supervisado basado en centroides. Las observaciones  $x_1, \ldots, x_n$  son asignadas a la clase del centroide más cercano  $\mu_1, \ldots, \mu_k$  a él.

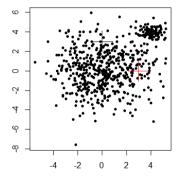
El método de agrupamiento (clustering) k-medias es un procedimiento de clasificación no supervisado basado en centroides. Las observaciones  $x_1, \ldots, x_n$  son asignadas a la clase del centroide más cercano  $\mu_1, \ldots, \mu_k$  a él.

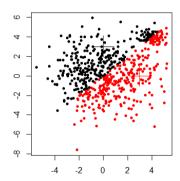




#### Definición

El método de agrupamiento (clustering) k-medias es un procedimiento de clasificación no supervisado basado en centroides. Las observaciones  $x_1, \ldots, x_n$  son asignadas a la clase del centroide más cercano  $\mu_1, \ldots, \mu_k$  a él.









## Definition

k-Medias

Sea  $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$  un conjunto de n observaciones **numéricas**. El agrupamiento por k-medias consiste de particionar X en k subconjuntos  $X = S_1 \cup \cdots \cup S_k$  por medio de kcentroides  $\mu_1, \ldots, \mu_k$  que minimizan la varianza:

$$\sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2, \quad \text{donde } \mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} x.$$

#### Definición

#### Definition

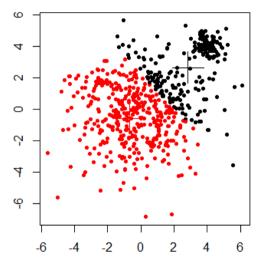
Sea  $X = \{x_1, \ldots, x_n\} \subseteq \mathbb{R}^d$  un conjunto de n observaciones **numéricas**. El agrupamiento por k-medias consiste de particionar X en k subconjuntos  $X = S_1 \cup \cdots \cup S_k$  por medio de k **centroides**  $\mu_1, \ldots, \mu_k$  que minimizan la varianza:

$$\sum_{i=1}^{k} \sum_{x \in S_i} ||x - \mu_i||^2, \quad \text{donde } \mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} x.$$

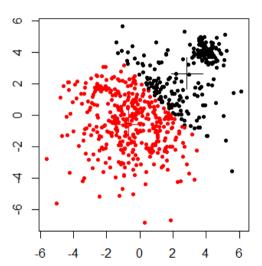
### Propiedades

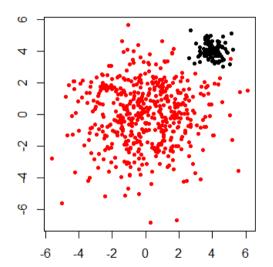
- ▶ Estimación de grupos con **simetría esférica**.
- Las variables tienen la misma varianza.
- ▶ Se asume apriori que todos los grupos son de **igual tamaño**.







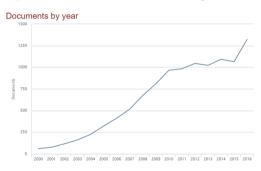




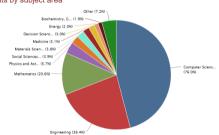


## Estado del Arte

## Quién lo utiliza? Todavía se investiga?



#### Documents by subject area







# Algoritmo

El problema de optimización no es computacionalmente fácil de resolver: es NP-Dificil! Existen heurísticas que aproximan la solución a un mínimo local muy rápido.





El problema de optimización no es computacionalmente fácil de resolver: es NP-Dificil! Existen heurísticas que aproximan la solución a un mínimo local muy rápido.

#### Definition

Input: Datos numéricos  $X = \{x_1, \dots, x_n\} \subseteq \mathbb{R}^d$ , Número de grupos k > 0.

Output: Subgrupos  $(x_1, y_1), \ldots, (x_n, y_n), \text{ con } y_i \in \{1, \ldots, k\}.$ 

Algoritmo:

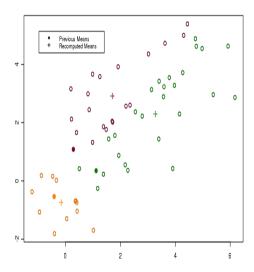
- 1. Inicialize los centros  $\mu_1, \ldots, \mu_k$  aleatoriamente.
- 2. Repita
  - 2.1 Calcula el subgrupo de cada observación:

$$y_i = \operatorname*{arg\,min}_j ||x_i - \mu_j||$$

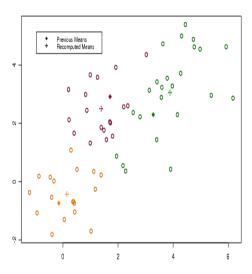
2.2 Actualiza los centros:

k-Medias

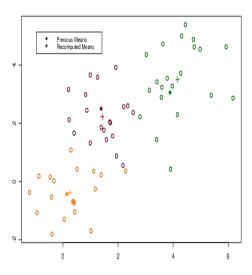
$$\mu_i = \frac{1}{|S_i|} \sum_{x \in S_i} x.$$



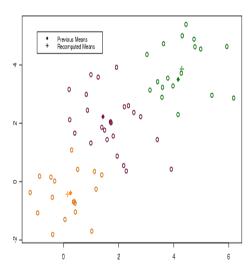




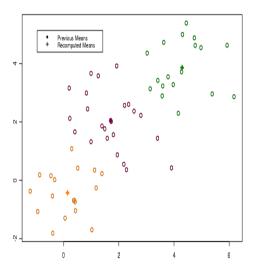






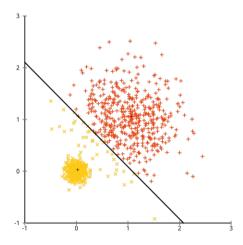








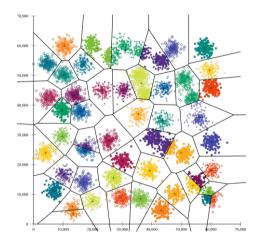
## Casos Problemáticos







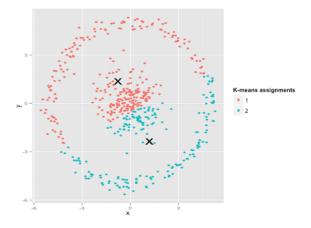
## Casos Problemáticos







## Casos Problemáticos







## Alternativas

Existen alternativas al algoritmo heurístico. Las alternativas ayudan a evitar la agrupación discontinua y la simetría esférica.

 $1.\ \,$  Estandarizar variables para evitar sesgos de escala.





#### Alternativas

Existen alternativas al algoritmo heurístico. Las alternativas ayudan a evitar la agrupación discontinua y la simetría esférica.

- 1. Estandarizar variables para evitar sesgos de escala.
- 2. Fuzzy k-means:

$$f(X,S) = \sum_{i=1}^{k} \sum_{x \in S_i} u_i(x) ||x - \mu_i||^2, \qquad u_i(x) = \frac{||x - \mu_i||^{-2/r}}{\sum_i ||x - \mu_i||^{-2/r}}$$



Existen alternativas al algoritmo heurístico. Las alternativas ayudan a evitar la agrupación discontinua y la simetría esférica.

- 1. Estandarizar variables para evitar sesgos de escala.
- 2. Fuzzy k-means:

k-Medias 000000000

$$f(X,S) = \sum_{i=1}^{k} \sum_{x \in S_i} u_i(x) ||x - \mu_i||^2, \qquad u_i(x) = \frac{||x - \mu_i||^{-2/r}}{\sum_i ||x - \mu_i||^{-2/r}}$$

3. Mixturas Gaussianas: Se asume que la muestra es una suma de normales y se actualizan  $\mu, \sigma$ por subgrupos ponderado por probabilidad  $\mathbb{P}(x_i|\mu_j,\sigma_j)$ .

#### Alternativas

Existen alternativas al algoritmo heurístico. Las alternativas ayudan a evitar la agrupación discontinua y la simetría esférica.

- 1. Estandarizar variables para evitar sesgos de escala.
- 2. Fuzzy k-means:

k-Medias 000000000

$$f(X,S) = \sum_{i=1}^{k} \sum_{x \in S_i} u_i(x) ||x - \mu_i||^2, \qquad u_i(x) = \frac{||x - \mu_i||^{-2/r}}{\sum_i ||x - \mu_i||^{-2/r}}$$

- 3. Mixturas Gaussianas: Se asume que la muestra es una suma de normales y se actualizan  $\mu, \sigma$ por subgrupos ponderado por probabilidad  $\mathbb{P}(x_i|\mu_j,\sigma_j)$ .
- 4. Kernel k-medias: Se utiliza una función de kernel  $k(x_i \mu_i, x_i \mu_i)$  a cambio de  $||x_i \mu_i||^2$ .



Existen alternativas al algoritmo heurístico. Las alternativas ayudan a evitar la agrupación discontinua y la simetría esférica.

- 1. Estandarizar variables para evitar sesgos de escala.
- 2. Fuzzy k-means:

$$f(X,S) = \sum_{i=1}^{k} \sum_{x \in S_i} u_i(x) ||x - \mu_i||^2, \qquad u_i(x) = \frac{||x - \mu_i||^{-2/r}}{\sum_i ||x - \mu_i||^{-2/r}}$$

- 3. Mixturas Gaussianas: Se asume que la muestra es una suma de normales y se actualizan  $\mu$ ,  $\sigma$  por subgrupos ponderado por probabilidad  $\mathbb{P}(x_i|\mu_j,\sigma_j)$ .
- 4. Kernel k-medias: Se utiliza una función de kernel  $k(x_i \mu_j, x_i \mu_j)$  a cambio de  $||x_i \mu_j||^2$ .
- 5. Metricas no euclidianas:  $l_1, l_{\infty}, l_p$ .



## Garantías

1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).





- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.



- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.
- 3. Robustez? No. De hecho es muy fácil que el algoritmo falle:



- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.
- 3. Robustez? No. De hecho es muy fácil que el algoritmo falle:
  - 3.1 Muestra desbalanceada



#### Garantías

- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.
- 3. Robustez? No. De hecho es muy fácil que el algoritmo falle:
  - 3.1 Muestra desbalanceada
  - 3.2 Sensible a escala



#### Garantías

- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.
- 3. Robustez? No. De hecho es muy fácil que el algoritmo falle:
  - 3.1 Muestra desbalanceada
  - 3.2 Sensible a escala
  - 3.3 No acepta datos categórticos





- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.
- 3. Robustez? No. De hecho es muy fácil que el algoritmo falle:
  - 3.1 Muestra desbalanceada
  - 3.2 Sensible a escala
  - 3.3 No acepta datos categórticos
  - 3.4 Qué pasa en dimensiones altas (d > n)?



- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.
- 3. Robustez? No. De hecho es muy fácil que el algoritmo falle:
  - 3.1 Muestra desbalanceada
    - 3.2 Sensible a escala
    - 3.3 No acepta datos categórticos
    - 3.4 Qué pasa en dimensiones altas (d > n)?
    - 3.5 Convergencia a óptimo local



- 1. Complejidad? NP-Difícil, pero las heurísticas son O(nd).
- 2. Convergencia? El algortimo heurístico converge rápidamente a un óptimo local.
- 3. Robustez? No. De hecho es muy fácil que el algoritmo falle:
  - 3.1 Muestra desbalanceada
    - 3.2 Sensible a escala
    - 3.3 No acepta datos categórticos
    - 3.4 Qué pasa en dimensiones altas (d > n)?
    - 3.5 Convergencia a óptimo local



Reglas de Asociación



#### Motivación

- Las reglas de asociación son muy usadas en bases de datos comerciales.
- ▶ Tenemos "canastas" de bienes que son vectores (muy grandes)
- ▶ ¿Podemos encontrar bienes que sean comprados juntos con mucha frecuencia?
- ¿Para qué podría servir algo así?



## Motivación

- ▶ Un almacén puede organizar mejor sus repisas para mejorar sus ingresos.
- ▶ Hacer mercadeo cruzado de ciertas promociones que tengan que ver la una con la otra.
- ▶ Segmentar clientes de acuerdo a sus patrones de consumo.
- $\blacktriangleright$  Diseñar experiencias para usuarios en páginas web.
- ► Recomendar películas en Netflix? Productos en Amazon?









- ightharpoonup Quisiéramos encontrar algunas canastas  $v_1, \ldots, v_n$  tales que su densidad de probabilidad  $Pr(v_i)$  sea "alta".
- Este problema se llama Mode Finding o Bump Hunting.
- Sin embargo hay muchísimas canastas posibles (¿Cuántos productos tiene Éxito en sus repisas?)
- Una estimación de la densidad de estas canastas siempre dará algo muy pequeño como para ser confiable.
- ► Además calcular esas densidades es incomputable! ¿Cuántas canastas hav?



## ¿Cuántos productos vende Amazon?

| Amazon.com   | USA     | 253 million |
|--------------|---------|-------------|
| Amazon.co.uk | UK      | 153 million |
| Amazon.de    | Germany | 141 million |
| Amazon.fr    | France  | 119 million |
| Amazon.co.jp | Japan   | 108 million |
| Amazon.it    | Italy   | 88 million  |
| Amazon.es    | Spain   | 86 million  |
| Amazon.ca    | Canada  | 56 million  |





# Simplificar

- ▶ Podemos dejar de buscar canastas prototipos y buscar "regiones" en el consumo.
- Probablemente sea mucho más interesante y fácil de interpretar una relación entre dos o pocos productos.
- ▶ Podríamos agrupar tipos de productos en una sola variable dummy.
- ightharpoonup Podemos pensar en la probabilidad de todas las canastas que contienen el artículo  $\omega$ .



Considerando un elemento de cada clase (posiblemente binaria) la ecuación se simplifica

$$P\left[\bigcap_{k\in\mathcal{K}}(z_k=1)\right] = P\left[\prod_{k\in\mathcal{K}}z_k=1\right] = T(\mathcal{K})$$

- Esto implica segmentar variables continuas que pueda haber en el análisis.
- El conjunto  $\mathcal{K}$  se conoce como conjunto de bienes o *item set*.

Queremos encontrar reglas  $X \to Y$  con buenas garantía probabilísticas (confianza). Estimamos las probabilidades de las canatas con la frecuencia en las base de transacciones:

$$supp(X) := \frac{T(X)}{T}, \qquad conf(X \to Y) = \frac{supp(X \ y \ Y)}{supp(X)}.$$

Queremos tener en cuenta solo aquellas transacciones con un soporte mínimimo t y confianza mínima s. El algoritmo del árbol busca reglas aprovechando:

- 1.  $X \to Y \vee X \to Z$  implican  $X \to Y \cup Z$
- 2.  $X \subseteq Y$  implies supp(X) > supp(Y)

Queremos encontrar reglas  $X \to Y$  con buenas garantía probabilísticas (confianza). Estimamos las probabilidades de las canatas con la frecuencia en las base de transacciones:

$$supp(X) := \frac{T(X)}{T}, \qquad conf(X \to Y) = \frac{supp(X \ y \ Y)}{supp(X)}.$$

Queremos tener en cuenta solo aquellas transacciones con un soporte mínimimo t y confianza mínima s. El algoritmo del árbol busca reglas aprovechando:

- 1.  $X \to Y \vee X \to Z$  implican  $X \to Y \cup Z$
- 2.  $X \subseteq Y$  implies supp(X) > supp(Y)

El algoritmo realiza:

- 1. Saca las items con soporte < t.
- 2. Ordena los items descendientemente por soporte.
- 3. Orden las transacciones descendientemente por tamaño.
- Construye un árbol con pesos en el que cada camino hacia la raíz es una transacción.
- 5. Para cada hoja del árbol, Y, la rama que la contiene es el antecedente que la implica X.



- ▶ Se buscan reglas de asociación entre 9409 cuestionarios de compradores de un Mall en San Francisco.
- ▶ Se buscan relaciones entre las variables demográficas.
- ▶ Se parten las variables ordinales como "Dummies" por la mediana.
- $\blacktriangleright$  El algoritmo encuentra 6288 reglas de asociación (difícil de interpretar) con soporte mayor a  $10\,\%$





Implementación

### Ejemplo

Association rule 2: Support 13.4%, confidence 80.8%, and lift 2.13.

$$\begin{bmatrix} \text{language in home} &= & \textit{English} \\ \text{householder status} &= & \textit{own} \\ \text{occupation} &= & \{\textit{professional/managerial}\} \end{bmatrix}$$

$$\downarrow \downarrow$$

$$\text{income} \geq \$40,000$$

Association rule 3: Support 26.5%, confidence 82.8% and lift 2.15.

```
 \begin{bmatrix} \text{language in home} &= & English \\ \text{income} &< & \$40,000 \\ \text{marital status} &= & not married \\ \text{number of children} &= & 0 \\ \end{bmatrix}
```

education  $\notin \{college\ graduate,\ graduate\ study\}$ 



Implementación

#### Limitaciones

- ▶ Está sesgado hacia observaciones más frecuentes que otras.
- ightharpoonup Nunca encontraría Vodka  $\Rightarrow$  Caviar. A pesar de tener un lift alto.
- ► Esto es porque intrínsicamente se está comparando con una distribución de referencia uniforme.
- ▶ Esto se puede solucionar en conjuntos pequeños con una estimación de la densidad basada en una distribución de referencia acorde a las probabilidades marginales.
- Se usa aprendizaje supervisado para ajustar una densidad relativa a esa distribución (por ejemplo una logística).



