Model Selection, Validation and Ensembles

Alvaro J. Riascos Villegas
University of los Andes and Quantil

July 62018

Contenido

(1) Model Selection, Validation and Ensembles
(2) Cross-Validation
(3) Ensemble Methods

- Bagging and Sub-bagging
- Boosting
- Stacking

Objetives

- Choose hyper parameters: regularization parameter, number of nearest neighbors, layers or neurons of artificial neural net, etc.
- Estimating test error.

Best of the worlds

- In reach data environments it is possible to estimate correctly the hyper parameters of a model as well as the text errro.

Contenido

(1) Model Selection, Validation and Ensembles

(2) Cross-Validation
(3) Ensemble Methods

- Bagging and Sub-bagging
- Boosting
- Stacking

Cross-Validation

- When data is not so rich an alternative is to do cross validation. Cross validation is another key concept form ML.
- It is a technique to estimate hyper parameters and the expected test error.
- K - fold cross validation:
(1) Divide in K random samples the originals data set. Given sample k, train a model with the rest of the samples ($K-1$ samples). Test the model with the choosen sample. Repeat and take an average of the K cross validation errors.
(2) When $K=N$, the size of the training set, it is called leave one out cross validation.

FIGURE 7.8. Hypothetical learning curve for a classifier on a given task: a plot of 1 -Err versus the size of the training set N. With a dataset of 200 observations, 5 -fold cross-validation would use training sets of size 160, which would behave much like the full set. However, with a dataset of 50 observations fivefold crossvalidation would use training sets of size 40 , and this would result in a considerable overestimate of prediction error.

- The optimal k depends on the size of the data. A large K with few data, overestimates the test error. A low K underestimates the test error. $K=5,10$ are standard.

Cross-Validation: Correct use

- Consider a problem with many predictors.
- Reduce the number of predictors using any of the studied techniques.
- Use cross validation to estimate hyper parameters and test error.
- Is this a good use of cross-validations?

Contenido

(1) Model Selection, Validation and Ensembles
(2) Cross-Validation
(3) Ensemble Methods

- Bagging and Sub-bagging
- Boosting
- Stacking

Introduction

- These are general methodologies for combining a collection of simpler models.
- We give a very brief overview of:
(1) Bagging and Sub-bagging.
(2) Boosting.
(3) Stacking.

In a nutshell

- Bagging is a general methodology for averaging models and reducing variance.
- Bagging is a bootstrap of the prediction
- Sub-bagging is a special case, it is also a boostrap of the prediction and balances clases when disproportionately unbalanced

In a nutshell

- Bagging is a general methodology for averaging models and reducing variance.
- Bagging is a bootstrap of the prediction.
- Sub-bagging is a special case, it is also a boostrap of the prediction and balances clases when disproportionately unbalanced

In a nutshell

- Bagging is a general methodology for averaging models and reducing variance.
- Bagging is a bootstrap of the prediction.
- Sub-bagging is a special case, it is also a boostrap of the prediction and balances clases when disproportionately unbalanced.

Boptstay
repicatio

FIGURE 7．12．Schematic of the bootstrap process．
We wish to assess the statistical accuracy of a quan－ tity $S(\mathbf{Z})$ computed from our dataset．B training sets $\mathbf{Z}^{* b}, b=1, \ldots, B$ each of size N are drawn with re－ placement from the original dataset．The quantity of interest $S(\mathbf{Z})$ is computed from each bootstrap training set，and the values $S\left(\mathbf{Z}^{* 1}\right), \ldots, S\left(\mathbf{Z}^{* B}\right)$ are used to as－ sess the statistical accuracy of $S(\mathbf{Z})$ ．

```
Boosting
Stacking
```


Setup

- Let $\tau_{n}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ donde $y_{i} \in\{-1,1\}$.
- Define an initial set of weights for each obervationi: $D_{1}(i)=\frac{1}{m}$. D_{t} will denote a distribution on the m observations.

AdaBoost

- For each $t=1, \ldots, T$
- Construct a weak classifier h_{t} that minimizes the loss function:
(1) Define the error e_{t} as:

$$
\begin{equation*}
e_{t}=\sum_{i=1}^{m} D_{t}(i) I\left(y_{i} \neq h_{t}\left(x_{i}\right)\right) \tag{1}
\end{equation*}
$$

(2) Let $\alpha_{t}=\frac{1}{2} \log \left(\frac{1-e_{t}}{e_{t}}\right)$
(3) Modify weights:

$$
D_{t+1}(i) \rightarrow \frac{D_{t}(i) \exp \left(-\alpha_{t} y_{i} h_{t}\left(x_{i}\right)\right)}{Z_{t}}
$$

where $Z_{t}=\sum_{i=1}^{m} D_{t}(i)$

- $H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} h_{t}(x)\right)$

Optimal combination of models

- Take the prediction of many models as features in a regression problem.
- A simple example is to use regularization techniques to make combined model (e.g., Ridge, Lasso, etc)

