Model Selection, Validation and Ensembles

Alvaro J. Riascos Villegas University of los Andes and Quantil

July 6 2018

Image: Image:

Contenido

1 Model Selection, Validation and Ensembles

2 Cross-Validation

3 Ensemble Methods

- Bagging and Sub-bagging
- Boosting
- Stacking

Image: A matrix and a matrix

∢ ≣⇒

Objetives

- Choose hyper parameters: regularization parameter, number of nearest neighbors, layers or neurons of artificial neural net, etc.
- Estimating test error.

Best of the worlds

• In reach data environments it is possible to estimate correctly the hyper parameters of a model as well as the text errro.

Image: Image:

Contenido

1 Model Selection, Validation and Ensembles

2 Cross-Validation

3 Ensemble Methods

- Bagging and Sub-bagging
- Boosting
- Stacking

Image: A mathematical states and a mathem

∢ ≣ ≯

Cross-Validation

- When data is not so rich an alternative is to do cross validation. Cross validation is another key concept form ML.
- It is a technique to estimate hyper parameters and the expected test error.
- K- fold cross validation:
 - Divide in K random samples the originals data set. Given sample k, train a model with the rest of the samples (K 1 samples). Test the model with the choosen sample. Repeat and take an average of the K cross validation errors.
 - 2 When K = N, the size of the training set, it is called leave one out cross validation.

Cross-Validation: K vrs. 1

FIGURE 7.8. Hypothetical learning curve for a classifier on a given task: a plot of 1-Err versus the size of the training set N. With a dataset of 200 observations, 5-fold cross-validation would use training sets of size 160, which would behave much like the full set. However, with a dataset of 50 observations fivefold cross-validation would use training sets of size 40, and this would result in a considerable overestimate of prediction error.

• The optimal k depends on the size of the data. A large K with few data, overestimates the test error. A low K underestimates the test error. K = 5, 10 are standard.

500

- Consider a problem with many predictors.
- Reduce the number of predictors using any of the studied techniques.
- Use cross validation to estimate hyper parameters and test error.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Is this a good use of cross-validations?

Model Selection, Validation and Ensembles Cross-Validation Ensemble Methods Bagging and Sub-bagging Boosting Stacking

Contenido

1 Model Selection, Validation and Ensembles

2 Cross-Validation

3 Ensemble Methods

- Bagging and Sub-bagging
- Boosting
- Stacking

Image: A matrix and a matrix

∢ 重.

Introduction

• These are general methodologies for combining a collection of simpler models.

<<p>Image: A matrix

- We give a very brief overview of:
 - Bagging and Sub-bagging.
 - Boosting.
 - Stacking.

Bagging and Sub-bagging Boosting Stacking

< □ > < □ > < □ > < □ >

In a nutshell

- Bagging is a general methodology for averaging models and reducing variance.
- Bagging is a bootstrap of the prediction.
- Sub-bagging is a special case, it is also a boostrap of the prediction and balances clases when disproportionately unbalanced.

Bagging and Sub-bagging Boosting Stacking

In a nutshell

- Bagging is a general methodology for averaging models and reducing variance.
- Bagging is a bootstrap of the prediction.
- Sub-bagging is a special case, it is also a boostrap of the prediction and balances clases when disproportionately unbalanced.

Bagging and Sub-bagging Boosting Stacking

In a nutshell

- Bagging is a general methodology for averaging models and reducing variance.
- Bagging is a bootstrap of the prediction.
- Sub-bagging is a special case, it is also a boostrap of the prediction and balances clases when disproportionately unbalanced.

FIGURE 7.12. Schematic of the bootstrap process. We wish to assess the statistical accuracy of a quantity $S(\mathbf{Z})$ computed from our dataset. B training sets \mathbf{Z}^{*b} , b = 1, ..., B each of size N are drawn with replacement from the original dataset. The quantity of interest $S(\mathbf{Z})$ is computed from each bootstrap training set, and the values $S(\mathbf{Z}^{*1}), ..., S(\mathbf{Z}^{*B})$ are used to assess the statistical accuracy of $S(\mathbf{Z})$.

Setup

- Let $\tau_n = \{(x_1, y_1), ..., (x_m, y_m)\}$ donde $y_i \in \{-1, 1\}$.
- Define an initial set of weights for each observation*i*: D₁(*i*) = ¹/_m. D_t will denote a distribution on the *m* observations.

イロト イヨト イヨト イヨト

AdaBoost

- For each t = 1, ..., T
- Construct a weak classifier h_t that minimizes the loss function:

1 Define the error e_t as:

$$e_t = \sum_{i=1}^m D_t(i) I(y_i \neq h_t(x_i))$$
(1)

Image: A mathematical states and a mathem

→ < Ξ →

2 Let
$$\alpha_t = \frac{1}{2} \log(\frac{1-e_t}{e_t})$$

3 Modify weights:

$$D_{t+1}(i)
ightarrow rac{D_t(i)\exp(-lpha_t y_i h_t(x_i))}{Z_t}$$

where
$$Z_t = \sum_{i=1}^m D_t(i)$$

• $H(x) = sign(\sum_{t=1}^T \alpha_t h_t(x))$

Bagging and Sub-bagging Boosting Stacking

Image: A matrix

Optimal combination of models

- Take the prediction of many models as features in a regression problem.
- A simple example is to use regularization techniques to make combined model (e.g., Ridge, Lasso, etc)