
Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Artificial Neural Networks

Alvaro J. Riascos Villegas
University of los Andes and Quantil

July 6 2018

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Contenido

1 Introduction

2 ANN in Action

3 Final Observations

4 Application: Poverty Detection

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Introduction

ANN is a highly nonlinear and tractable machine learning
algorithm.

It is an universal approximator.

Advances in calibration methodologies in terms of speed and
enormous success for solving pattern recognition problems
such as image recognition, voice translation, etc.

The success solving these tasks has put ANN and Deep Neural
ANN at the center stage of research and industry applications.

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Introduction

ANN is a highly nonlinear and tractable machine learning
algorithm.

It is an universal approximator.

Advances in calibration methodologies in terms of speed and
enormous success for solving pattern recognition problems
such as image recognition, voice translation, etc.

The success solving these tasks has put ANN and Deep Neural
ANN at the center stage of research and industry applications.

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Introduction

ANN is a highly nonlinear and tractable machine learning
algorithm.

It is an universal approximator.

Advances in calibration methodologies in terms of speed and
enormous success for solving pattern recognition problems
such as image recognition, voice translation, etc.

The success solving these tasks has put ANN and Deep Neural
ANN at the center stage of research and industry applications.

Artificial Neural Networks A. Riascos



Basic ANN: Feedforward Neural Net

The most basic ANN is called Feedforward Neural Net or
Multilayer Perceptor.

The logistic model is a special case, you already know the
simplest ANN!

These networks are difficult to optimize globally.

A key idea to carry a computationally efficient optimization is
the idea of backpropagation.



Basic ANN: Feedforward Neural Net

The most basic ANN is called Feedforward Neural Net or
Multilayer Perceptor.

The logistic model is a special case, you already know the
simplest ANN!

These networks are difficult to optimize globally.

A key idea to carry a computationally efficient optimization is
the idea of backpropagation.



Basic ANN: Feedforward Neural Net

The most basic ANN is called Feedforward Neural Net or
Multilayer Perceptor.

The logistic model is a special case, you already know the
simplest ANN!

These networks are difficult to optimize globally.

A key idea to carry a computationally efficient optimization is
the idea of backpropagation.



Basic ANN: Feedforward Neural Net

The most basic ANN is called Feedforward Neural Net or
Multilayer Perceptor.

The logistic model is a special case, you already know the
simplest ANN!

These networks are difficult to optimize globally.

A key idea to carry a computationally efficient optimization is
the idea of backpropagation.



Basic ANN: Two layers

A two layer ANN can be represented by the following graph.
There is one hidden layer and one output layer. Each layer
may have an arbitrary number of units (i.e., neurons)

228 5. NEURAL NETWORKS

Figure 5.1 Network diagram for the two-
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables x0 and
z0. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

and follows the same considerations as for linear models discussed in Chapters 3 and
4. Thus for standard regression problems, the activation function is the identity so
that yk = ak. Similarly, for multiple binary classification problems, each output unit
activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (5.5)

where

σ(a) =
1

1 + exp(−a)
. (5.6)

Finally, for multiclass problems, a softmax activation function of the form (4.62)
is used. The choice of output unit activation function is discussed in detail in Sec-
tion 5.2.

We can combine these various stages to give the overall network function that,
for sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑

j=1

w
(2)
kj h

(
D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(5.7)

where the set of all weight and bias parameters have been grouped together into a
vector w. Thus the neural network model is simply a nonlinear function from a set
of input variables {xi} to a set of output variables {yk} controlled by a vector w of
adjustable parameters.

This function can be represented in the form of a network diagram as shown
in Figure 5.1. The process of evaluating (5.7) can then be interpreted as a forward
propagation of information through the network. It should be emphasized that these
diagrams do not represent probabilistic graphical models of the kind to be consid-
ered in Chapter 8 because the internal nodes represent deterministic variables rather
than stochastic ones. For this reason, we have adopted a slightly different graphical



Basic ANN: Two layers

Assume you have D input variables: {x1, ..., xD} and M
output variables {y1, ..., yM}.
Let h1, h2 be activations functions (h2 is the activation
function of the output layer).

The following equation describe a two layer feed-forward ANN:



Basic ANN: Two layers

a
(1)
j =

D∑

i=1

w
(1)
ji xi + w

(1)
j0

z
(1)
j = h1(a

(1)
j )

a
(2)
j =

M∑

i=1

w
(2)
ji z

(1)
i + w

(2)
j0

z
(2)
j = h2(a

(2)
j )

where w
(1)
j0 ,w

(2)
j0 represent the bias (constant) in each layer.



Basic ANN: Two layers

Let z
(0)
i = xi , yj = z

(2)
j

If we define the additional variables x0 = 1, z
(1)
0 = 1 and

z
(2)
0 = 1, we can rewrite the equations describing the ANN as :

yk(x ,w) = h2(
M∑

j=0

w
(2)
kj h1(

D∑

i=0

w
(1)
ji xi ))



Basic ANN: Two layers

This two layer terminology reflects the fact that we have to
estimate two set of parameters (the linear weights at each
layer).

228 5. NEURAL NETWORKS

Figure 5.1 Network diagram for the two-
layer neural network corre-
sponding to (5.7). The input,
hidden, and output variables
are represented by nodes, and
the weight parameters are rep-
resented by links between the
nodes, in which the bias pa-
rameters are denoted by links
coming from additional input
and hidden variables x0 and
z0. Arrows denote the direc-
tion of information flow through
the network during forward
propagation.

x0

x1

xD

z0

z1

zM

y1

yK

w
(1)
MD w

(2)
KM

w
(2)
10

hidden units

inputs outputs

and follows the same considerations as for linear models discussed in Chapters 3 and
4. Thus for standard regression problems, the activation function is the identity so
that yk = ak. Similarly, for multiple binary classification problems, each output unit
activation is transformed using a logistic sigmoid function so that

yk = σ(ak) (5.5)

where

σ(a) =
1

1 + exp(−a)
. (5.6)

Finally, for multiclass problems, a softmax activation function of the form (4.62)
is used. The choice of output unit activation function is discussed in detail in Sec-
tion 5.2.

We can combine these various stages to give the overall network function that,
for sigmoidal output unit activation functions, takes the form

yk(x,w) = σ

(
M∑

j=1

w
(2)
kj h

(
D∑

i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(5.7)

where the set of all weight and bias parameters have been grouped together into a
vector w. Thus the neural network model is simply a nonlinear function from a set
of input variables {xi} to a set of output variables {yk} controlled by a vector w of
adjustable parameters.

This function can be represented in the form of a network diagram as shown
in Figure 5.1. The process of evaluating (5.7) can then be interpreted as a forward
propagation of information through the network. It should be emphasized that these
diagrams do not represent probabilistic graphical models of the kind to be consid-
ered in Chapter 8 because the internal nodes represent deterministic variables rather
than stochastic ones. For this reason, we have adopted a slightly different graphical



Basic ANN: Universal Approximation Property

An ANN with two layers and linear output activation functions
can approximate any continuos function on a bounded domain
(more precisely, on a compact domain) with enough neurons.

This is true for many activation functions in the hidden layer
(though not for polynomials).



Approximation properties examples (2 layers, 3 neurons)
5.1. Feed-forward Network Functions 231

Figure 5.3 Illustration of the ca-
pability of a multilayer perceptron
to approximate four different func-
tions comprising (a) f(x) = x2, (b)
f(x) = sin(x), (c), f(x) = |x|,
and (d) f(x) = H(x) where H(x)
is the Heaviside step function. In
each case, N = 50 data points,
shown as blue dots, have been sam-
pled uniformly in x over the interval
(−1, 1) and the corresponding val-
ues of f(x) evaluated. These data
points are then used to train a two-
layer network having 3 hidden units
with ‘tanh’ activation functions and
linear output units. The resulting
network functions are shown by the
red curves, and the outputs of the
three hidden units are shown by the
three dashed curves.

(a) (b)

(c) (d)

will show that there exist effective solutions to this problem based on both maximum
likelihood and Bayesian approaches.

The capability of a two-layer network to model a broad range of functions is
illustrated in Figure 5.3. This figure also shows how individual hidden units work
collaboratively to approximate the final function. The role of hidden units in a simple
classification problem is illustrated in Figure 5.4 using the synthetic classification
data set described in Appendix A.

5.1.1 Weight-space symmetries
One property of feed-forward networks, which will play a role when we consider

Bayesian model comparison, is that multiple distinct choices for the weight vector
w can all give rise to the same mapping function from inputs to outputs (Chen et al.,
1993). Consider a two-layer network of the form shown in Figure 5.1 with M hidden
units having ‘tanh’ activation functions and full connectivity in both layers. If we
change the sign of all of the weights and the bias feeding into a particular hidden
unit, then, for a given input pattern, the sign of the activation of the hidden unit will
be reversed, because ‘tanh’ is an odd function, so that tanh(−a) = − tanh(a). This
transformation can be exactly compensated by changing the sign of all of the weights
leading out of that hidden unit. Thus, by changing the signs of a particular group of
weights (and a bias), the input–output mapping function represented by the network
is unchanged, and so we have found two different weight vectors that give rise to
the same mapping function. For M hidden units, there will be M such ‘sign-flip’

Simulated data 50 blue dots. ANN with 2 layers, 3 neurons,
tanh activation in the hidden layer and linear activation in
output layer. Dotted lines show the results of the 3 neurons.



Classifying using ANN

232 5. NEURAL NETWORKS

Figure 5.4 Example of the solution of a simple two-
class classification problem involving
synthetic data using a neural network
having two inputs, two hidden units with
‘tanh’ activation functions, and a single
output having a logistic sigmoid activa-
tion function. The dashed blue lines
show the z = 0.5 contours for each of
the hidden units, and the red line shows
the y = 0.5 decision surface for the net-
work. For comparison, the green line
denotes the optimal decision boundary
computed from the distributions used to
generate the data.

−2 −1 0 1 2

−2

−1

0

1

2

3

symmetries, and thus any given weight vector will be one of a set 2M equivalent
weight vectors .

Similarly, imagine that we interchange the values of all of the weights (and the
bias) leading both into and out of a particular hidden unit with the corresponding
values of the weights (and bias) associated with a different hidden unit. Again, this
clearly leaves the network input–output mapping function unchanged, but it corre-
sponds to a different choice of weight vector. For M hidden units, any given weight
vector will belong to a set of M ! equivalent weight vectors associated with this inter-
change symmetry, corresponding to the M ! different orderings of the hidden units.
The network will therefore have an overall weight-space symmetry factor of M !2M .
For networks with more than two layers of weights, the total level of symmetry will
be given by the product of such factors, one for each layer of hidden units.

It turns out that these factors account for all of the symmetries in weight space
(except for possible accidental symmetries due to specific choices for the weight val-
ues). Furthermore, the existence of these symmetries is not a particular property of
the ‘tanh’ function but applies to a wide range of activation functions (Ku̇rková and
Kainen, 1994). In many cases, these symmetries in weight space are of little practi-
cal consequence, although in Section 5.7 we shall encounter a situation in which we
need to take them into account.

5.2. Network Training

So far, we have viewed neural networks as a general class of parametric nonlinear
functions from a vector x of input variables to a vector y of output variables. A
simple approach to the problem of determining the network parameters is to make an
analogy with the discussion of polynomial curve fitting in Section 1.1, and therefore
to minimize a sum-of-squares error function. Given a training set comprising a set
of input vectors {xn}, where n = 1, . . . , N , together with a corresponding set of

ANN binary classification problem with two layers and two
neurons. Dotted lines are the classification hypersurfaces of
each neuron.

Red line de ANN classification result and green line, Bayesian
classifier.



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Contenido

1 Introduction

2 ANN in Action

3 Final Observations

4 Application: Poverty Detection

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

ANN in Action: Data

Artificial Neural Networks A. Riascos



ANN in Action: Logistic (One layer with sigmoid
activation)



ANN in Action: Two layers



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Contenido

1 Introduction

2 ANN in Action

3 Final Observations

4 Application: Poverty Detection

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Final Observations

ANN can be trained using standard techniques (gradient
descent, etc.). The key idea is how to calculate derivatives of
the loss function with respect to parameters: use the structure
of the net and chain rule (i.e., backpropagation).

Deep ANN are ANN with many layers and probably, many
neurons per layer.

Adding layers allows for a simpler representation of any
continuous representation.

Learning data representations (features) is possible by
extracting intermediate outputs from hidden layers.

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Contenido

1 Introduction

2 ANN in Action

3 Final Observations

4 Application: Poverty Detection

Artificial Neural Networks A. Riascos



Introduction
ANN in Action

Final Observations
Application: Poverty Detection

Application: Nightlight

Combining satellite imagery and ML to predict poverty. Jean
et.al. Science, 2016.

Artificial Neural Networks A. Riascos



Application: Learning Representations



Application: Prediction


	Introduction
	ANN in Action
	Final Observations
	Application: Poverty Detection

