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Supervised vs. Unsupervised Learning

Unsupervised Learning
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Applications

o Clients segmentation.




Applications

@ Dimensionality reduction.




Applications

@ Diagnosis.




Applications

@ Meaning based on context.
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Algorithms

Association rules.
K—medias.

Principal components analysis.

Local outlier factor (LOF).
Word Embeddings (Text).

°
°
°
@ Mixture models.
°
°
e Latent Dirichlet Allocation (Text).
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Association Rules

@ The idea is to learn the distribution of X.

@ We look for regions in which X has a high density and in
which association between variables may be locally high.

@ Let X un vector de p variables (continuos or categoric) and S;
the support of X;. Let s; C S;. We first focus on finding
(s1,%2, ..., Sp) such that

p
PI((X €)1 > s, (1)

Jj=1

where s is a minimum support level for variable j.



Association Rules: Simplification

X1 X1 X1

FIGURE 14.1. Simplifications for association rules.
Here there are two inputs X1 and Xa, taking four and
sixz distinct values, respectively. The red squares indi-
cate areas of high density. To simplify the computa-
tions, we assume that the derived subset corresponds
to either a single value of an input or all values. With
this assumption we could find either the middle or right
pattern, but not the left one.



Association Rules: Dummy variable representation

@ Suppose every possible value of X is represented with a
dummy variable (categorize continuous variables if necessary).
Assume we have K dummies.

o Each T C {1,..., K} such that P[(;cv(Z; =1)] > s
represents a group (basket) that has a minimum support).



Association Rules: Dummy variable representation

@ Suppose every possible value of X is represented with a
dummy variable (categorize continuous variables if necessary).
Assume we have K dummies.

o Each T C {1,..., K} such that P[(;cv(Z; =1)] > s
represents a group (basket) that has a minimum support).

@ The natural estimator of this probability is the frequency of
baskets that have this products.
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antecedent and B the consequent. the support of the rules is
the support of T. It represents the probability that items A
and B are in a basket.
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@ The main questions we want to answer are:

Q@ Given T C {1,..., K} partition T in two sets A, B. Each
expression of the form A = B, is called a rule with A the
antecedent and B the consequent. the support of the rules is
the support of T. It represents the probability that items A
and B are in a basket.

@ The confidence of the rule A= B, C(A = B) is defined as
C(A=B) = %:‘J)B). It is an estimator of de P(B | A), a
local association estimator between the two item sets.

© The expected confidence of B is Supp(B = P(B).

@ The Lift of the rule A= B is defined as:

L(A= B) = gi?zg)). It is a measure of the degree of
AAB)

association between A and B: %.




Reglas de Asociacién: Ejemplo

Association rule 2: Support 13.4%. confidence 80.8%, and lift 2.13

language in home English
householder status

secupation { professional /managerial}

Association rule 3: Support 26.5%
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Introduction

@ It is an algorithm to group data based on a dissimilarity
measure (a distance).

@ It is based on a distance measure in the feature space.
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Ejemplo: Algoritmo
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Ejemplo: Algoritmo
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Ejemplo: Algoritmo
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Ejemplo: Particiones

Initial Centroids Initial Partition

Iteration Number 2 Iteration Number 20

FIGURE 14.6. Successive iterations of the K-means
clustering algorithm for the simulated data of Fig-
ure 14.4.



K-means: Problems with standardization

X2
0
2
Xo
0

FIGURE 14.5. Simulated data: on the left, K-means
clustering (with K =2) has been applied to the raw data.
The two colors indicate the cluster memberships. On
the right, the features were first standardized before
clustering. This is equivalent to using feature weights
1/[2 - var(X;)]. The standardization has obscured the
two well-separated groups. Note that each plot uses the
same units in the horizontal and vertical azxes.



K-means: Difficult cases

K-means assignments




Choosing the number of clusters

4

8

3 o

©

®

3 i

e

2

g 8

o & 7

g g

g

5

g n o

3 \

»

2w

- 8 .

]

g 3

z N

g 4 ~o

@ \O

> 5 ~o

g o ~o

<1 + - \O‘o\

s 3 0—0—o0—o0—p

£

H T T T T T T T
2 4 6 8 10 12 14

Numero de clusters



Principal Components in a Nutshell

Contenido

e Principal Components in a Nutshell

Unsupervised Learning A. Riascos



Principal Components in a Nutshell

Principal Components: Example

—401 ,
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Principal Components: Example |l




Application: Handwritten numbers

- 33333
: 33333
- 33334
; 33333
. 33333

6 -4 2 0 2 4 6 8

First Principal Component

FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.




Detour: Classification
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Detour: Classification

Kernel Density Estimation

Estimation of densities

@ Suppose x1, ..., Xy is a sample of data taken from a
distribution with density fx(x).
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Detour: Classification

Kernel Density Estimation

Estimation of densities

@ Suppose x1, ..., Xy is a sample of data taken from a
distribution with density fx(x).
@ A first local estimator is:
num{N(xp)}
—_ 2
N (2)

where N(xp) is a neighbourhood of size A.

fx(x0) =
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Detour: Classification

Kernel Density Estimation

Estimation of densities

@ Suppose x1, ..., Xy is a sample of data taken from a
distribution with density fx(x).
@ A first local estimator is:
num{N(xp)}
N

where N(xp) is a neighbourhood of size A.

fx(x0) =

@ A smoothed version is:
1 N
fx(x0) = 75 D Ka(x0, xi) (3)

N 4
i=1

|x—xo]

where for example Ky (xo,x;) = 1(=5=) and ¢ is the
standard Gaussian density (0, 1).
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Estimation of densities

@ In reduced form:
fX(X Z %(X - XI (4)

where 1y is the Gaussian density with standard deviation A.

@ This easily generalizes to several dimensions.



Estimation of densities
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Systolic Blood Pressure (for CHD group)

FIGURE 6.13. A kernel density estimate for systolic
blood pressure (for the CHD group). The density es-
timate at each point is the average contribution from
each of the kernels at that point. We have scaled the
kernels down by a factor of 10 to make the graph read-
able.



Detour: Classification

Kernel Density Estimation

Classification

@ Using the estimations of Kernel densities by class f;, the
optimal classifier can be written as (using Bayes rule):

. mifi(x0)
G = = X = —" J
PE=iIX=m) =2 )

where 7; are the relative frequencies of each class.
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Estimation of densities
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FIGURE 6.14. The left panel shows the two separate
density estimates for systolic blood pressure in the CHD
versus no-CHD groups, using a Gaussian kernel density
estimate in each. The right panel shows the estimated
posterior probabilities for CHD, using (6.25).
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@ When the feature space is to big (big p) the estimation by
kernels has large variance

@ Bayes classifier assumes independence among features and in
that case the Bayes classifier is reduced to:

m;fi(x0) (6)

P(G=j[X=x)=
S i1 Tk fi(x0)

where:
fi(x) = M7y f.1(x) (7)
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Classification: Naive Bayes

@ When the feature space is to big (big p) the estimation by
kernels has large variance

@ Bayes classifier assumes independence among features and in
that case the Bayes classifier is reduced to:

: m;fi(x0)
o=/l * > iem1 Tkfic(x0) ©

where:
fi(x) = M7y f.1(x) (7)

@ Each f;; is a unidimensional kernel. The complexity of the
problem is reduced immensely.

o If any feature is discrete, it allows to mix easily continuous
and categorical features.
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