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Introduction: Data

In the last 2 years more information has been produced and
stored than that throughout all history of humanity.

The projects Australia’s radio telescopes, the Large Hadron
Collider (CERN), etc. generate various petabytes
(106GB = 103TB) of daily information.

The daily consumption of Netflix is 100 million videos.

400 hours of video are uploaded to Youtube every minute.

Cisco estimates that in 2020, 200 petabytes of video per
second will be transferred arround the world.
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What all these information has in common:
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Introduction: Mathematics

A psychologist from a prison in California approached the
Stanford Statistics Department with this:
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THE MARKOV CHAIN MONTE CARLO REVOLUTION

PERSI DIACONIS

Abstract. The use of simulation for high-dimensional intractable computa-
tions has revolutionized applied mathematics. Designing, improving and un-
derstanding the new tools leads to (and leans on) fascinating mathematics,
from representation theory through micro-local analysis.

1. Introduction

Many basic scientific problems are now routinely solved by simulation: a fancy
random walk is performed on the system of interest. Averages computed from the
walk give useful answers to formerly intractable problems. Here is an example
drawn from course work of Stanford students Marc Coram and Phil Beineke.

Example 1 (Cryptography). Stanford’s Statistics Department has a drop-in con-
sulting service. One day, a psychologist from the state prison system showed up
with a collection of coded messages. Figure 1 shows part of a typical example.

Figure 1:

The problem was to decode these messages. Marc guessed that the code was a
simple substitution cipher, each symbol standing for a letter, number, punctuation
mark or space. Thus, there is an unknown function f

f : {code space} −→ {usual alphabet}.
One standard approach to decrypting is to use the statistics of written English to
guess at probable choices for f , try these out, and see if the decrypted messages
make sense.
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To get the statistics, Marc downloaded a standard text (e.g., War and Peace)
and recorded the first-order transitions: the proportion of consecutive text symbols
from x to y. This gives a matrix M(x, y) of transitions. One may then associate a
plausibility to f via

Pl(f) =
∏

i

M (f(si), f(si+1)) ,

where si runs over consecutive symbols in the coded message. Functions f which
have high values of Pl(f) are good candidates for decryption. Maximizing f ’s were
searched for by running the following Markov chain Monte Carlo algorithm:

• Start with a preliminary guess, say f .
• Compute Pl(f).
• Change to f∗ by making a random transposition of the values f assigns to

two symbols.
• Compute Pl(f∗); if this is larger than Pl(f), accept f∗.
• If not, flip a Pl(f∗)/Pl(f) coin; if it comes up heads, accept f∗.
• If the coin toss comes up tails, stay at f .

The algorithm continues, trying to improve the current f by making random trans-
positions. The coin tosses allow it to go to less plausible f ’s, and keep it from
getting stuck in local maxima.

Of course, the space of f ’s is huge (40! or so). Why should this Metropolis
random walk succeed? To investigate this, Marc tried the algorithm out on a
problem to which he knew the answer. Figure 2 shows a well-known section of
Shakespeare’s Hamlet.

Figure 2:

The text was scrambled at random and the Monte Carlo algorithm was run.
Figure 3 shows sample output.

Figure 3:
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After 100 steps, the message is a mess. After two thousand steps, the decrypted
message makes sense. It stays essentially the same as further steps are tried. I find
it remarkable that a few thousand steps of this simple optimization procedure work
so well. Over the past few years, friends in math and computer science courses
have designed homework problems around this example [17]. Students are usually
able to successfully decrypt messages from fairly short texts; in the prison example,
about a page of code was available.

The algorithm was run on the prison text. A portion of the final result is shown
in Figure 4. It gives a useful decoding that seemed to work on additional texts.

Figure 4:

I like this example because a) it is real, b) there is no question the algorithm found
the correct answer, and c) the procedure works despite the implausible underlying
assumptions. In fact, the message is in a mix of English, Spanish and prison jargon.
The plausibility measure is based on first-order transitions only. A preliminary
attempt with single-letter frequencies failed. To be honest, several practical details
have been omitted: we allowed an unspecified “?” symbol in the deviation (with
transitions to and from “?” being initially uniform). The display in Figure 4 was
“cleaned up” by a bit of human tinkering. I must also add that the algorithm
described has a perfectly natural derivation as Bayesian statistics. The decoding
function f is a parameter in a model specifying the message as the output of a
Markov chain with known transition matrix M(x, y). With a uniform prior on f ,
the plausibility function is proportional to the posterior distribution. The algorithm
is finding the mode of the posterior.

In Section 2, I explain Markov chains and the Metropolis algorithm more care-
fully. A closely related Markov chain on permutations is analyzed in Section 3.
The arguments use symmetric function theory, a bridge between combinatorics and
representation theory.

A very different example — hard discs in a box — is introduced in Section 4. The
tools needed for study are drawn from analysis, micro-local techniques (Section 5)
along with functional inequalities (Nash and Sobolev inequalities).

Throughout, emphasis is on analysis of iterates of self-adjoint operators using
the spectrum. There are many other techniques used in modern probability. A brief
overview, together with pointers on how a beginner can learn more, is in Section 6.
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The new discipline

1.6 Classification of Data Mining Systems 29

Measures of pattern interestingness are essential for the efficient discovery of patterns
of value to the given user. Such measures can be used after the data mining step in order
to rank the discovered patterns according to their interestingness, filtering out the unin-
teresting ones. More importantly, such measures can be used to guide and constrain the
discovery process, improving the search efficiency by pruning away subsets of the pattern
space that do not satisfy prespecified interestingness constraints. Such constraint-based
mining is described in Chapter 5 (with respect to association mining) and Chapter 7
(with respect to clustering).

Methods to assess pattern interestingness, and their use to improve data mining effi-
ciency, are discussed throughout the book, with respect to each kind of pattern that can
be mined.

1.6 Classification of Data Mining Systems

Data mining is an interdisciplinary field, the confluence of a set of disciplines, includ-
ing database systems, statistics, machine learning, visualization, and information science
(Figure 1.12). Moreover, depending on the data mining approach used, techniques from
other disciplines may be applied, such as neural networks, fuzzy and/or rough set theory,
knowledge representation, inductive logic programming, or high-performance comput-
ing. Depending on the kinds of data to be mined or on the given data mining application,
the data mining system may also integrate techniques from spatial data analysis, informa-
tion retrieval, pattern recognition, image analysis, signal processing, computer graphics,
Web technology, economics, business, bioinformatics, or psychology.

Becauseof thediversityofdisciplinescontributingtodatamining,dataminingresearch
is expected to generate a large variety of data mining systems. Therefore, it is necessary to
provide a clear classification of data mining systems, which may help potential users dis-
tinguish between such systems and identify those that best match their needs. Data mining
systems can be categorized according to various criteria, as follows:

Database
technology

Machine
learning

Data
Mining

Information
science

Statistics

Visualization Other disciplines

Figure 1.12 Data mining as a confluence of multiple disciplines.



Industry impact

http://www.alvaroriascos.com/mineriadatos/

The-age-of-analytics-Executive-summary.pdf

http://www.alvaroriascos.com/mineriadatos/The-age-of-analytics-Executive-summary.pdf
http://www.alvaroriascos.com/mineriadatos/The-age-of-analytics-Executive-summary.pdf


Data minning process

ly understandable patterns in data (Fayyad,
Piatetsky-Shapiro, and Smyth 1996).

Here, data are a set of facts (for example,
cases in a database), and pattern is an expres-
sion in some language describing a subset of
the data or a model applicable to the subset.
Hence, in our usage here, extracting a pattern
also designates fitting a model to data; find-
ing structure from data; or, in general, mak-
ing any high-level description of a set of data.
The term process implies that KDD comprises
many steps, which involve data preparation,
search for patterns, knowledge evaluation,
and refinement, all repeated in multiple itera-
tions. By nontrivial, we mean that some
search or inference is involved; that is, it is
not a straightforward computation of
predefined quantities like computing the av-
erage value of a set of numbers.

The discovered patterns should be valid on
new data with some degree of certainty. We
also want patterns to be novel (at least to the
system and preferably to the user) and poten-
tially useful, that is, lead to some benefit to
the user or task. Finally, the patterns should
be understandable, if not immediately then
after some postprocessing. 

The previous discussion implies that we can
define quantitative measures for evaluating
extracted patterns. In many cases, it is possi-
ble to define measures of certainty (for exam-
ple, estimated prediction accuracy on new

data) or utility (for example, gain, perhaps in
dollars saved because of better predictions or
speedup in response time of a system). No-
tions such as novelty and understandability
are much more subjective. In certain contexts,
understandability can be estimated by sim-
plicity (for example, the number of bits to de-
scribe a pattern). An important notion, called
interestingness (for example, see Silberschatz
and Tuzhilin [1995] and Piatetsky-Shapiro and
Matheus [1994]), is usually taken as an overall
measure of pattern value, combining validity,
novelty, usefulness, and simplicity. Interest-
ingness functions can be defined explicitly or
can be manifested implicitly through an or-
dering placed by the KDD system on the dis-
covered patterns or models. 

Given these notions, we can consider a
pattern to be knowledge if it exceeds some in-
terestingness threshold, which is by no
means an attempt to define knowledge in the
philosophical or even the popular view. As a
matter of fact, knowledge in this definition is
purely user oriented and domain specific and
is determined by whatever functions and
thresholds the user chooses.

Data mining is a step in the KDD process
that consists of applying data analysis and
discovery algorithms that, under acceptable
computational efficiency limitations, pro-
duce a particular enumeration of patterns (or
models) over the data. Note that the space of
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Data

Transformed
Data

Patterns

Preprocessing

Data Mining

Interpretation / 
Evaluation

Transformation

Selection

--- --- ---
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Knowledge

Preprocessed Data

Target Date

Figure 1. An Overview of the Steps That Compose the KDD Process.

KDD: Knowledge Discovery in Datasets
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