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Optimal Learning Algorithms

Bayes regression and classification algorithms

@ For the regression problem it is possible to prove that the best
learning function, when the loss is cuadratic, is:

F(x) = EplY | X]
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Optimal Learning Algorithms

Bayes regression and classification algorithms

@ For the regression problem it is possible to prove that the best
learning function, when the loss is cuadratic, is:

f(x) = Ep[Y | X]

@ For the classification problem it is possible to prove that the
best learning function, when the loss is zero - one, is:
f(x)=1if P(Y | X) > 0,5 and zero otherwise. For multiple
categories it is easily generalized.
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Linear Regression

@ The Linear Regression model assumes:
f(x)~XTpB
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Linear Regression

@ The Linear Regression model assumes:
f(x)~XTpB
@ If we minimize the risk subject to the restriction that
functions must be linear, we obtain:

B=E(XXT) T E(XY)
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Linear Regression

@ The Linear Regression model assumes:
f(x)~XTpB
@ If we minimize the risk subject to the restriction that
functions must be linear, we obtain:

B=E(XXT) T E(XY)

@ The model assumes that f(x) is globally linear.
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Linear Regression and k-NN Feature selection

Best subset, rd, backward and stagewise
Principal components

k-NN: k-Nearest Neighbors

@ k-NN estimates the conditional expected value locally as a
constant function.

f(x) =~ Mean (y |x € Ni(x))
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Linear Regression and k-NN Feature selection

Best subset, forward, backward and stagewise
Principal components

Comparison between Linear Regression and k-NN

@ Both methods approximate to E(Y|X = x) using averages but
they use different assumptions over the true learning function:
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Comparison between Linear Regression and k-NN

@ Both methods approximate to E(Y|X = x) using averages but
they use different assumptions over the true learning function:
o Linear Regression assumes that f(x) is globally linear.
o k-NN assumes that f(x) is locally constant.
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Feature selection

@ Two common problems:
@ Test error: it's possible to diminish the test error by reducing
the number of variables (this reduces the complexity and
variance) although it increases bias.
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Feature selection

@ Two common problems:

@ Test error: it's possible to diminish the test error by reducing
the number of variables (this reduces the complexity and
variance) although it increases bias.

@ Interpretation: a smaller number of features allows an easier
and better interpretation.
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Feature selection

@ Two common problems:

@ Test error: it's possible to diminish the test error by reducing
the number of variables (this reduces the complexity and
variance) although it increases bias.

@ Interpretation: a smaller number of features allows an easier
and better interpretation.

o We are going to discuss different ways of reducing the number
of features.
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Feature selection: Best subset of features

@ Best subset of features.
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Feature selection: Best subset of features

@ Best subset of features.
e The subset of features which produces the smallest test error is
chosen.

e Computationally expensive. Is computationally viable for
models with less than 40 features.
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Feature selection: Best subset of features
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.



Feature selection: Forward, Backward and Stagewise

selection

o Forward: Start with a model only with a constant and
sequentially add the feature which reduces prediction error the
most. On each stage the model is reestimated.
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Feature selection: Forward, Backward and Stagewise

selection

o Forward: Start with a model only with a constant and
sequentially add the feature which reduces prediction error the
most. On each stage the model is reestimated.

@ Backward: Start with a model with all the features, proceed to
eliminate the feature that less contributes to the final
prediction (it can be done using the Z-score). On each stage
the model is reestimated.

@ Stagewise: Start with a model only with a constant and

sequentially add the feature that has the biggest correlation
with the residual errors of the last model. Don't reestimate.



Feature selection: Growth Regressions

Comparing Variable Selection Algorithms: Which Variables Appeared as Important
Predictors of Economic Growth?

Predictor Bayesian model averaging CDF(0) LASSO Spike-and-Slab
GDP level 1960 1.000 1.000 - 0.9992
Fraction Confucian 0.995 1.000 2 0.9730
Life expectancy 0.946 0.942 - 0.9610
Equipment investment 0.757 0.997 1 0.9532
Sub-Saharan dummy 0.656 1.000 7 0.5834
Fraction Muslim 0.656 1.000 8 0.6590
Rule of law 0.516 1.000 - 0.4532
Open economy 0.502 1.000 6 0.5736
Degree of capitalism 0.471 0.987 9 0.4230
Fraction Protestant 0.461 0.966 5 0.3798

Source: The table is based on that in Ley and Steel (2009); the data analyzed is from Sala-i-Martin (1997).
Notes: We illustrate different methods of variable selection. This exercise involved examining a dataset
of 72 counties and 42 variables in order to see which variables appeared to be important predictors
of economic growth. The table shows ten predictors that were chosen by Sala-i-Martin (1997) using
a CDF(0) measure defined in the 1997 paper; Ley and Steel (2009) using Bayesian model averaging,
LASSO, and spike-and-slab regressions. Metrics used are not strictly comparable across the various
models. The “Bayesian model averaging” and “Spike-and-Slab” columns are posterior probabilities
of inclusion; the “LASSO” column just shows the ordinal importance of the variable or a dash
indicating that it was not included in the chosen model; and the CDF(0) measure is defined in
Sala-i-Martin (1997).
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Principal components

@ Sometimes many features are highly correlated.

@ The information they give to the model is redundant.
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Linear Regression and k-NN Feature selection

Best subset, forward, backward and stagewise
Principal components

Principal components

@ Sometimes many features are highly correlated.
@ The information they give to the model is redundant.

@ Can we construct a few new features that explain most of the
variation that the original features contain?

@ What if we wanted to build a single feature to replace all the
others, how is this possible?
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Principal components

@ The principal components are new features.
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Principal components

The principal components are new features.
They are linear combinations of the orignal features.

The first principal component is the linear combination that
maximizes the variance.

The second principal component is the linear combination
that maximizes the variance subject to being orthogonal to
the first principal component.

Successively, p principal components can be build.



Principal Components




Aplication: handwritten numbers
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First Principal Component

FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.




@ Apply PCA.

@ Choose the first PCs that explain the x % of the data’s
variance.

© Make a classification model using the PCs.

@ This can make a 200 feature model into a 5 feature model.



Regularization
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© Regularization
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Regularization

Regularization

@ The best subset can have the smallest test error. But it's a
discrete method. Features are either included or excluded fully.
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Regularization

@ The best subset can have the smallest test error. But it's a
discrete method. Features are either included or excluded fully.

@ This makes the method to have a high variance.
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Regularization

@ The best subset can have the smallest test error. But it's a
discrete method. Features are either included or excluded fully.

@ This makes the method to have a high variance.

@ Regularization methods are more continuous and have smaller
variance.
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Regularization

Regularization

@ The best subset can have the smallest test error. But it's a
discrete method. Features are either included or excluded fully.

@ This makes the method to have a high variance.

@ Regularization methods are more continuous and have smaller
variance.

@ Lets consider Ridge Regression and Lasso.
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Regularization

Regularization

@ The best subset can have the smallest test error. But it's a
discrete method. Features are either included or excluded fully.

@ This makes the method to have a high variance.

@ Regularization methods are more continuous and have smaller
variance.

@ Lets consider Ridge Regression and Lasso.

@ Regularization is key concept in machine learning. A
must for economists.
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Regularization

Regularization

@ The best subset can have the smallest test error. But it's a
discrete method. Features are either included or excluded fully.

@ This makes the method to have a high variance.

@ Regularization methods are more continuous and have smaller
variance.

@ Lets consider Ridge Regression and Lasso.

@ Regularization is key concept in machine learning. A
must for economists.

@ It allows to control for complexity, trading bias for variance.
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Regularization: Ridge

@ Solve:
N

min{3 (vi — fo = x 8)° + Al (D)]*} (1)

i=1



Regularization: Ridge

TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS
Intercept 2.465 2.477 2.452  2.468 2.497 2.452
lcavol 0.680 0.740 0.420  0.533 0.543 0.419
lweight 0.263 0.316 0.238  0.169 0.289 0.344
age —0.141 —0.046 —0.152  —0.026

1bph 0.210 0.162  0.002 0.214 0.220

svi 0.305 0.227  0.094 0.315 0.243

lcp —0.288 0.000 —0.051 0.079
gleason —0.021 0.040 0.232 0.011
pgeg4s 0.267 0.133 —0.056 0.084
Test Error 0.521 0.492 0.492  0.479 0.449 0.528

Std Error 0.179 0.143 0.165 0.164 0.105 0.152




Regularization: Ridge

Icavol

Coefficients
0.2

gleason

FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter X is varied. Coefficients are plotted versus df(A), the effective
degrees of freedom. A wertical line is drawn at df = 5.0, the value chosen by

cross-validation
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@ There are several techniques for controlling models complexity.
@ In the k-NN model this is controlled with k.

@ In the linear regression model this is controlled with: variables
selection techniques (subset selection, backward, forward,
PCA, etc.) and regularization.

@ Controlling complexity trades bias for variance, looking
forward to reduce test error.
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Classification and Regression Trees

@ The best classifier can be expressed by:

M
F(x) =Y cml {x € R} (2)
m=1

where R, are different regions in where the function is
approximated by a constant ¢,.
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Classification and Regression Trees

@ The best classifier can be expressed by:

M
F(x) =Y cml {x € R} (2)
m=1

where R, are different regions in where the function is
approximated by a constant ¢,.

@ Some regions are difficult to describe (left top panel, next
figure).
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Classification and Regression Trees

@ The best classifier can be expressed by:

M
F(x) =Y cml {x € R} (2)
m=1

where R, are different regions in where the function is
approximated by a constant ¢,.

@ Some regions are difficult to describe (left top panel, next
figure).

@ An alternative is to find regions by making sequential binary
partitions.
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Classification and Regression Trees (CART)

@ Panels 2, 3, 4 represent regions obtain by making sequential
binary partitions.




Example: Home Mortgage Disclosure Act

Home Mortgage Disclosure Act (HMDA) Data Tree
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Notes: Figure 5 shows a conditional tree estimated using the R package party. The black bars indicate
the fraction of each group who were denied mortgages. The most important determinant of this is
the variable “dmi,” or “denied mortgage insurance.” Other variables are: “dir,” debt payments to total
income ratio; “hir,” housing expenses to income ratio; “lvr,” ratio of size of loan to assessed value of
property; “ccs,” consumer credit score; “mes,” mortgage credit score; “pber,” public bad credit record;
‘dmi,” denied mortgage insurance; “self,” self-employed; “single,” applicant is single; “uria,” 1989
Massachusetts unemployment rate applicant’s industry; “condominium,” unit is condominium; “black,”
race of applicant black; and “deny,” mortgage application denied.




Classification Trees

Copeny
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FIGURE 9.5. The pruned tree for the spam ezample. The split variables are
shown in blue on the branches, and the classification is shown in every node. The
numbers under the terminal nodes indicate misclassification rates on the

est data.



Classification Trees

76 21 7 5 3 2 0
Lo I L L L

Misclassification Rate

Tree Size

FIGURE 9.4. Results for spam example. The blue
curve is the 10-fold cross-validation estimate of mis-
classification rate as a function of tree size, with stan-
dard error bars. The minimum occurs at a tree size
with about 17 terminal nodes (using the “one-standard-
-error” rule). The orange curve is the test error, which
tracks the CV error quite closely. The cross-validation
is indexed by values of o, shown above. The tree sizes
shown below refer to |Ta|, the size of the original tree
indezed by a.



Random Forests
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Random Forests

Random Forests

@ It is a technique that consists of the construction of many
uncorrelated trees and then averaging them. By doing that,
the variance is reduced.
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Random Forests: Algorithm

@ Forb=1,....B
@ Create samples of Z* of the same size of the sample.
@ Grow a tree Tj using the next steps until we reach a number
of observations less than n,;, in each node.
© Randomly, select m variables from the p variables.
@ Choose the best partition of the m variables in the node.
© Repeat 1 and 2 until we reach the minimum in each leaf.
@ In the regression task, average the trees. In the classification
task, use majority vote (each tree contributes with one vote).
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@ When each tree grows sufficiently large it is possible to
decrease the bias (increasing the variance). With the average,
the variance is reduced.
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Random Forests: Properties

@ When each tree grows sufficiently large it is possible to
decrease the bias (increasing the variance). With the average,
the variance is reduced.

@ The average bias is similar to the bias of each tree because
each tree is built using the same process. Hence, the potential
benefits are found in the decrease of the variance.

@ The variance reduction is obtained efficiently by averaging
uncorrelated trees.

@ The random choice in each partition guarantees that few
variables don't dominate the regression.



Random Forests: Performance

Spam Data

Bagging
Random Forest
—— Gradient Boosting (5 Node)

Test Error
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FIGURE 15.1. Bagging, random forest, and gradi-
ent boosting, applied to the spam data. For boosting,
5-node trees were used, and the number of trees were
chosen by 10-fold cross-validation (2500 trees). FEach
“step” in the figure corresponds to a change in a single
misclassification (in a test set of 1536).



Random Forests: Performance

California Housing Data

RF m=2
RF m=6
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FIGURE 15.3. Random forests compared to gradient
boosting on the California housing data. The curves
represent mean absolute error on the test data as a
function of the number of trees in the models. Two ran-
dom forests are shown, with m = 2 and m = 6. The
two gradient boosted models use a shrinkage parameter
v = 0.05 in (10.41), and have interaction depths of 4
and 6. The boosted models outperform random forests.



Random Forests: Recommendations

e For classification m = \/p y nmin = 1.
e For regression m = £y npi, = 5.

@ In practice, the parameters must be calibrated. For instance,
in the California example, the parameters work better with
other values.



Example: Relative importance

@ To measure the importance of each variable we first define the
relative importance of each variable in a single tree.

@ For each variable its importance can be measured as: sum the
squared reduction in error at each node that the variable is
used to split.



Example: Relative importan

Gini Randomization

0o m @ w @ o m @ @ w

Variable mporiance Variabie imporiance.

FIGURE 15.5. Variable importance plots for a classi-
fication random forest grown on the spam data. The left
plot bases the importance on the Gini splitting indez, as
in gradient boosti The ranksi compare well with
the rankings produced by gradient boosting (Figure 10.6
on page 316). The right plot uses 0OB randomization
to compute variable importances, and tends to spread
the importances more uniformly.
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ROC Curve
Calibration Curve

Model validation

Classification Models

@ Regression models: AIC, R?, MAPE, etc.

@ Classification models: ROC curve y calibration curve, etc.
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ROC Curve
Calibration Curve

Model validation

ROC Curve

@ ROC Curve and the area under the curve are important
methods of validation for classification problems.
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ROC Curve

3. Receiver operating characteristic curves
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@ Binary classification models can be extended to multi-class
classification models.
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ROC Curve

@ Consider a good and bad scores cumulative distribution graph.
The score that represents the maximum distance between
these two distributions is the Kolmogorov-Smirnov distance.

@ If we draw these two graphics in the same plot, we obtain the
ROC curve: on the y-axis we present the bad score
distribution function and on the x-axis the good score
distribution function: sensitivity vs (1-specificity(x)).

@ The KS distance represents the score where the horizontal
distance between the ROC curve and the diagonal line is
maximum (slope=1).

@ Gini coefficient is two times the area between the diagonal line
and the ROC Curve.

@ In the ROC curve, KS is the point where the curve has a slope
= 1 or the greater distance to the diagonal.



ROC Curve
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ROC Curve
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ROC Curve

Calibration Curve

Model validation
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Calibration Curve

@ Measures the error between the predicted frequencies of an
event and the observed frequencies.
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@ Measures the error between the predicted frequencies of an
event and the observed frequencies.

@ In most machine learning applications, we use x? test to
determine the statistical significance of the error.
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Calibration Curve

@ Measures the error between the predicted frequencies of an
event and the observed frequencies.

@ In most machine learning applications, we use x? test to
determine the statistical significance of the error.
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