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Bayes regression and classification algorithms

For the regression problem it is possible to prove that the best
learning function, when the loss is cuadratic, is:

f (x) = EP [Y | X ]

For the classification problem it is possible to prove that the
best learning function, when the loss is zero - one, is:
f (x) = 1 if P(Y | X ) ≥ 0,5 and zero otherwise. For multiple
categories it is easily generalized.
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Linear Regression

The Linear Regression model assumes:

f (x) ≈ XTβ

If we minimize the risk subject to the restriction that
functions must be linear, we obtain:

β = E
(
XXT

)−1
E (XY )

The model assumes that f (x) is globally linear.
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k-NN: k-Nearest Neighbors

k-NN estimates the conditional expected value locally as a
constant function.

f (x) ≈ Mean (y |x ∈ Nk(x))
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Comparison between Linear Regression and k-NN

Both methods approximate to E (Y |X = x) using averages but
they use different assumptions over the true learning function:

Linear Regression assumes that f (x) is globally linear.
k-NN assumes that f (x) is locally constant.
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Feature selection

Two common problems:
1 Test error: it’s possible to diminish the test error by reducing

the number of variables (this reduces the complexity and
variance) although it increases bias.

2 Interpretation: a smaller number of features allows an easier
and better interpretation.

We are going to discuss different ways of reducing the number
of features.
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Feature selection: Best subset of features

Best subset of features.

The subset of features which produces the smallest test error is
chosen.
Computationally expensive. Is computationally viable for
models with less than 40 features.
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FIGURE 3.5. All possible subset models for the prostate cancer example. At
each subset size is shown the residual sum-of-squares for each model of that size.

cross-validation to estimate prediction error and select k; the AIC criterion
is a popular alternative. We defer more detailed discussion of these and
other approaches to Chapter 7.

3.3.2 Forward- and Backward-Stepwise Selection

Rather than search through all possible subsets (which becomes infeasible
for pmuch larger than 40), we can seek a good path through them. Forward-
stepwise selection starts with the intercept, and then sequentially adds into
the model the predictor that most improves the fit. With many candidate
predictors, this might seem like a lot of computation; however, clever up-
dating algorithms can exploit the QR decomposition for the current fit to
rapidly establish the next candidate (Exercise 3.9). Like best-subset re-
gression, forward stepwise produces a sequence of models indexed by k, the
subset size, which must be determined.

Forward-stepwise selection is a greedy algorithm, producing a nested se-
quence of models. In this sense it might seem sub-optimal compared to
best-subset selection. However, there are several reasons why it might be
preferred:



Feature selection: Forward, Backward and Stagewise
selection

Forward: Start with a model only with a constant and
sequentially add the feature which reduces prediction error the
most. On each stage the model is reestimated.

Backward: Start with a model with all the features, proceed to
eliminate the feature that less contributes to the final
prediction (it can be done using the Z-score). On each stage
the model is reestimated.

Stagewise: Start with a model only with a constant and
sequentially add the feature that has the biggest correlation
with the residual errors of the last model. Don’t reestimate.
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model averaging, a technique related to, but not identical with, spike-and-slab. model averaging, a technique related to, but not identical with, spike-and-slab. 
Hendry and Krolzig (2004) examined an iterative signifi cance test selection method.Hendry and Krolzig (2004) examined an iterative signifi cance test selection method.

Table 4 shows ten predictors that were chosen by Sala-i-Martín (1997) using Table 4 shows ten predictors that were chosen by Sala-i-Martín (1997) using 
his two million regressions, Ley and Steel (2009) using Bayesian model averaging, his two million regressions, Ley and Steel (2009) using Bayesian model averaging, 
LASSO, and spike-and-slab. The table is based on that in Ley and Steel (2009) but LASSO, and spike-and-slab. The table is based on that in Ley and Steel (2009) but 
metrics used are not strictly comparable across the various models. The “Bayesian metrics used are not strictly comparable across the various models. The “Bayesian 
model averaging” and “spike-slab” columns show posterior probabilities of inclu-model averaging” and “spike-slab” columns show posterior probabilities of inclu-
sion; the “LASSO” column just shows the ordinal importance of the variable or sion; the “LASSO” column just shows the ordinal importance of the variable or 
a dash indicating that it was not included in the chosen model; and the CDF(0) a dash indicating that it was not included in the chosen model; and the CDF(0) 
measure is defi ned in Sala-i-Martín (199 7).measure is defi ned in Sala-i-Martín (199 7).

The LASSO and the Bayesian techniques are very computationally effi cient The LASSO and the Bayesian techniques are very computationally effi cient 
and would likely be preferred to exhaustive search. All four of these variable selec-and would likely be preferred to exhaustive search. All four of these variable selec-
tion methods give similar results for the fi rst four or fi ve variables, after which they tion methods give similar results for the fi rst four or fi ve variables, after which they 
diverge. In this particular case, the dataset appears to be too small to resolve the diverge. In this particular case, the dataset appears to be too small to resolve the 
question of what is “important” for economic growt h.question of what is “important” for economic growt h.

Variable Selection in Time Series Applications
The machine learning techniques described up until now are generally The machine learning techniques described up until now are generally 

applied to cross-sectional data where independently distributed data is a plausible applied to cross-sectional data where independently distributed data is a plausible 
assumption. However, there are also techniques that work with time series. Here we assumption. However, there are also techniques that work with time series. Here we 

Table 4
Comparing Variable Selection Algorithms: Which Variables Appeared as Important 
Predictors of Economic Growth?

Predictor Bayesian model averaging CDF(0) LASSO Spike-and-Slab

GDP level 1960 1.000 1.000 - 0.9992
Fraction Confucian 0.995 1.000 2 0.9730
Life expectancy 0.946 0.942 - 0.9610
Equipment investment 0.757 0.997 1 0.9532
Sub-Saharan dummy 0.656 1.000 7 0.5834
Fraction Muslim 0.656 1.000 8 0.6590
Rule of law 0.516 1.000 - 0.4532
Open economy 0.502 1.000 6 0.5736
Degree of capitalism 0.471 0.987 9 0.4230
Fraction Protestant 0.461 0.966 5 0.3798

Source: The table is based on that in Ley and Steel (2009); the data analyzed is from Sala-i-Martín (1997).
Notes: We illustrate different methods of variable selection. This exercise involved examining a dataset 
of 72 counties and 42 variables in order to see which variables appeared to be important predictors 
of economic growth. The table shows ten predictors that were chosen by Sala-i-Martín (1997) using 
a CDF(0) measure defi ned in the 1997 paper; Ley and Steel (2009) using Bayesian model averaging, 
LASSO, and spike-and-slab regressions. Metrics used are not strictly comparable across the various 
models. The “Bayesian model averaging” and “Spike-and-Slab” columns are posterior probabilities 
of inclusion; the “LASSO” column just shows the ordinal importance of the variable or a dash 
indicating that it was not included in the chosen model; and the CDF(0) measure is defi ned in 
Sala-i-Martín (1997).



Optimal Learning Algorithms
Linear Regression and k-NN

Regularization
Classification and Regression Trees

Random Forests
Model validation

Feature selection
Best subset, forward, backward and stagewise
Principal components

Principal components

Sometimes many features are highly correlated.

The information they give to the model is redundant.

Can we construct a few new features that explain most of the
variation that the original features contain?

What if we wanted to build a single feature to replace all the
others, how is this possible?
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Principal components

The principal components are new features.

They are linear combinations of the orignal features.

The first principal component is the linear combination that
maximizes the variance.

The second principal component is the linear combination
that maximizes the variance subject to being orthogonal to
the first principal component.

Successively, p principal components can be build.
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FIGURE 14.23. (Left panel:) the first two principal components of the hand-
written threes. The circled points are the closest projected images to the vertices
of a grid, defined by the marginal quantiles of the principal components. (Right
panel:) The images corresponding to the circled points. These show the nature of
the first two principal components.
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• Real Trace
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FIGURE 14.24. The 256 singular values for the digitized threes, compared to
those for a randomized version of the data (each column of X was scrambled).



PCA in practice

1 Apply PCA.

2 Choose the first PCs that explain the x % of the data’s
variance.

3 Make a classification model using the PCs.

This can make a 200 feature model into a 5 feature model.
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Regularization

The best subset can have the smallest test error. But it’s a
discrete method. Features are either included or excluded fully.

This makes the method to have a high variance.

Regularization methods are more continuous and have smaller
variance.

Lets consider Ridge Regression and Lasso.

Regularization is key concept in machine learning. A
must for economists.

It allows to control for complexity, trading bias for variance.
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Solve:

ḿın
β0,β
{

N∑

i=1

(yi − β0 − xTi β)2 + λ‖(β)‖2} (1)
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TABLE 3.3. Estimated coefficients and test error results, for different subset
and shrinkage methods applied to the prostate data. The blank entries correspond
to variables omitted.

Term LS Best Subset Ridge Lasso PCR PLS

Intercept 2.465 2.477 2.452 2.468 2.497 2.452
lcavol 0.680 0.740 0.420 0.533 0.543 0.419
lweight 0.263 0.316 0.238 0.169 0.289 0.344

age −0.141 −0.046 −0.152 −0.026
lbph 0.210 0.162 0.002 0.214 0.220
svi 0.305 0.227 0.094 0.315 0.243
lcp −0.288 0.000 −0.051 0.079

gleason −0.021 0.040 0.232 0.011
pgg45 0.267 0.133 −0.056 0.084

Test Error 0.521 0.492 0.492 0.479 0.449 0.528
Std Error 0.179 0.143 0.165 0.164 0.105 0.152

squares,

β̂ridge = argmin
β

{ N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2
+ λ

p∑

j=1

β2
j

}
. (3.41)

Here λ ≥ 0 is a complexity parameter that controls the amount of shrink-
age: the larger the value of λ, the greater the amount of shrinkage. The
coefficients are shrunk toward zero (and each other). The idea of penaliz-
ing by the sum-of-squares of the parameters is also used in neural networks,
where it is known as weight decay (Chapter 11).

An equivalent way to write the ridge problem is

β̂ridge = argmin
β

N∑

i=1

(
yi − β0 −

p∑

j=1

xijβj

)2

,

subject to

p∑

j=1

β2
j ≤ t,

(3.42)

which makes explicit the size constraint on the parameters. There is a one-
to-one correspondence between the parameters λ in (3.41) and t in (3.42).
When there are many correlated variables in a linear regression model,
their coefficients can become poorly determined and exhibit high variance.
A wildly large positive coefficient on one variable can be canceled by a
similarly large negative coefficient on its correlated cousin. By imposing a
size constraint on the coefficients, as in (3.42), this problem is alleviated.

The ridge solutions are not equivariant under scaling of the inputs, and
so one normally standardizes the inputs before solving (3.41). In addition,
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter λ is varied. Coefficients are plotted versus df(λ), the effective
degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by
cross-validation.



Summing up

There are several techniques for controlling models complexity.

In the k-NN model this is controlled with k.

In the linear regression model this is controlled with: variables
selection techniques (subset selection, backward, forward,
PCA, etc.) and regularization.

Controlling complexity trades bias for variance, looking
forward to reduce test error.
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CART

The best classifier can be expressed by:

f (x) =
M∑

m=1

cmI {x ∈ Rm} (2)

where Rm are different regions in where the function is
approximated by a constant cm.

Some regions are difficult to describe (left top panel, next
figure).

An alternative is to find regions by making sequential binary
partitions.
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Classification and Regression Trees (CART)

Panels 2, 3, 4 represent regions obtain by making sequential
binary partitions.

306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.



Example: Home Mortgage Disclosure Act

Hal R. Varian     13

race was included as one of the predictors. The coeffi cient on race showed a statis-race was included as one of the predictors. The coeffi cient on race showed a statis-
tically signifi cant negative impact on probability of getting a mortgage for black tically signifi cant negative impact on probability of getting a mortgage for black 
applicants. This fi nding prompted considerable subsequent debate and discussion; applicants. This fi nding prompted considerable subsequent debate and discussion; 
see Ladd (1998) for an overview.see Ladd (1998) for an overview.

Here I  examine this question using the tree-based estimators described in Here I  examine this question using the tree-based estimators described in 
the previous section. The data consists of 2,380  observations of 12  predictors, the previous section. The data consists of 2,380  observations of 12  predictors, 
one of which was race. Figure  5 shows a conditional tree estimated using the one of which was race. Figure  5 shows a conditional tree estimated using the 
R package  package party..

The tree fi ts pretty well, misclassifying 228 of the 2,380  observations for The tree fi ts pretty well, misclassifying 228 of the 2,380  observations for 
an error rate of 9.6  percent. By comparison, a simple logistic regression does an error rate of 9.6  percent. By comparison, a simple logistic regression does 
slightly better, misclassifying 225 of the 2,380  observations, leading to an error slightly better, misclassifying 225 of the 2,380  observations, leading to an error 
rate of 9.5  percent. As you can see in Figure  5, the most important variable is rate of 9.5  percent. As you can see in Figure  5, the most important variable is 
“dmi” “dmi” == “denied mortgage insurance.” This variable alone explains much of the  “denied mortgage insurance.” This variable alone explains much of the 
variation in the data. The race variable (“black”) shows up far down the tree and variation in the data. The race variable (“black”) shows up far down the tree and 
seems to be relatively unimportant.seems to be relatively unimportant.

One way to gauge whether a variable is important is to exclude it from the One way to gauge whether a variable is important is to exclude it from the 
prediction and see what happens. When this is done, it turns out that the accu-prediction and see what happens. When this is done, it turns out that the accu-
racy of the tree-based model doesn’t change at all: exactly the same cases are racy of the tree-based model doesn’t change at all: exactly the same cases are 
misclassifi ed. Of course, it is perfectly possible that there was racial discrimination misclassifi ed. Of course, it is perfectly possible that there was racial discrimination 

Figure 5
Home Mortgage Disclosure Act (HMDA) Data Tree

Notes: Figure 5 shows a conditional tree estimated using the R package party. The black bars indicate 
the fraction of each group who were denied mortgages. The most important determinant of this is 
the variable “dmi,” or “denied mortgage insurance.” Other variables are: “dir,” debt payments to total 
income ratio; “hir,” housing expenses to income ratio; “lvr,” ratio of size of loan to assessed value of 
property; “ccs,” consumer credit score; “mcs,” mortgage credit score; “pbcr,” public bad credit record; 
“dmi,” denied mortgage insurance; “self,” self-employed; “single,” applicant is single; “uria,” 1989 
Massachusetts unemployment rate applicant’s industry; “condominium,” unit is condominium; “black,” 
race of applicant black; and “deny,” mortgage application denied.
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FIGURE 9.5. The pruned tree for the spam example. The split variables are
shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the test data.
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Random Forests

It is a technique that consists of the construction of many
uncorrelated trees and then averaging them. By doing that,
the variance is reduced.

Machine Learning: Basic Techniques A. Riascos



Random Forests: Algorithm

For b = 1, ...,B

Create samples of Z ∗ of the same size of the sample.

Grow a tree Tb using the next steps until we reach a number
of observations less than nmin in each node.

1 Randomly, select m variables from the p variables.
2 Choose the best partition of the m variables in the node.
3 Repeat 1 and 2 until we reach the minimum in each leaf.

In the regression task, average the trees. In the classification
task, use majority vote (each tree contributes with one vote).



Random Forests: Properties

When each tree grows sufficiently large it is possible to
decrease the bias (increasing the variance). With the average,
the variance is reduced.

The average bias is similar to the bias of each tree because
each tree is built using the same process. Hence, the potential
benefits are found in the decrease of the variance.

The variance reduction is obtained efficiently by averaging
uncorrelated trees.

The random choice in each partition guarantees that few
variables don’t dominate the regression.
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Random Forests: Recommendations

For classification m =
√
p y nmin = 1.

For regression m = p
3 y nmin = 5.

In practice, the parameters must be calibrated. For instance,
in the California example, the parameters work better with
other values.



Example: Relative importance

To measure the importance of each variable we first define the
relative importance of each variable in a single tree.

For each variable its importance can be measured as: sum the
squared reduction in error at each node that the variable is
used to split.
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FIGURE 15.5. Variable importance plots for a classi-
fication random forest grown on the spam data. The left
plot bases the importance on the Gini splitting index, as
in gradient boosting. The rankings compare well with
the rankings produced by gradient boosting (Figure 10.6
on page 316). The right plot uses oob randomization
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ROC Curve and the area under the curve are important
methods of validation for classification problems.
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ROC Curve

Receiver operating characteristic
We also briefly explain the concept of an ROC curve. The construction of
an ROC curve is illustrated in figure 2, showing possible distributions of
rating scores for defaulting and non-defaulting debtors. For a perfect rat-
ing model, the left distribution and the right distribution in figure 2 would
be separate. For real rating systems, perfect discrimination in general is not
possible. Both distributions will overlap, as illustrated in figure 2.

Assume someone has to find out from the rating scores which debtors
will survive during the next period and which debtors will default. One
possibility for the decision-maker would be to introduce a cutoff value C
as in figure 2, and to classify each debtor with a rating score lower than C
as a potential defaulter and each debtor with a rating score higher than C
as a non-defaulter. Then four decision results would be possible. If the rat-
ing score is below the cutoff value C and the debtor defaults subsequent-
ly, the decision was correct. Otherwise the decision-maker wrongly
classified a non-defaulter as a defaulter. If the rating score is above the cut-
off value and the debtor does not default, the classification was correct.
Otherwise, a defaulter was incorrectly assigned to the non-defaulters group.

Using the notation of Sobehart & Keenan (2001), we define the hit rate
HR(C) as:

where H(C) (equal to the light area in figure 2) is the number of default-
ers predicted correctly with the cutoff value C, and ND is the total number
of defaulters in the sample. The false alarm rate FAR(C) (equal to the dark
area in figure 2) is defined as:

where F(C) is the number of false alarms, that is, the number of non-de-
faulters that were classified incorrectly as defaulters by using the cutoff
value C. The total number of non-defaulters in the sample is denoted by
NND. The ROC curve is constructed as follows. For all cutoff values C that
are contained in the range of the rating scores the quantities HR(C) and
FAR(C) are calculated. The ROC curve is a plot of HR(C) versus FAR(C).
This is shown in figure 3.

A rating model’s performance is better the steeper the ROC curve is at
the left end and the closer the ROC curve’s position is to the point (0, 1).
Similarly, the larger the area below the ROC curve, the better the model.
We denote this area by A. It can be calculated as:

The area A is 0.5 for a random model without discriminative power and it

A HR FAR d FAR= ( ) ( )∫
0

1

FAR C
F C

NND

( ) =
( )

HR C
H C

ND

( ) =
( )

is 1.0 for a perfect model. It is between 0.5 and 1.0 for any reasonable rat-
ing model in practice.

Connection between ROC curves and CAP curves
We prove a relation between the accuracy ratio and the area under the
ROC curve (A) in order to demonstrate that both measures are equivalent.
By a simple calculation, we get for the area aP between the CAP of the
perfect rating model and the CAP of the random model:

We introduce some additional notation. If we randomly draw a debtor from
the total sample of debtors, the resulting score is described by a random
variable ST. If the debtor is drawn randomly from the sample of defaulters
only, the corresponding random variable is denoted by SD, and if the debtor
is drawn from the sample of non-defaulters only, the random variable is
denoted by SND. Note that HR(C) = P(SD < C) and FAR(C) = P(SND < C).

To calculate the area aR between the CAP of the rating model being
validated and the CAP of the random model, we need the cumulative dis-
tribution function P(ST < C), where ST is the distribution of the rating scores
in the total population of all debtors. In terms of SD and SND, the cumula-
tive distribution function P(ST < C) can be expressed as:

Since we assumed that the distributions of SD and SND are continuous, we
have P(SD = C) = P(SND = C) = 0 for all attainable scores C.

Using this, we find for the area aR:

With these expressions for aP and aR, the accuracy ratio can be calculated as:

This means that the accuracy ratio can be calculated directly from the area
below the ROC curve and vice versa.2 Hence, both summary statistics con-
tain the same information.
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Binary classification models can be extended to multi-class
classification models.



ROC Curve

Consider a good and bad scores cumulative distribution graph.
The score that represents the maximum distance between
these two distributions is the Kolmogorov-Smirnov distance.

If we draw these two graphics in the same plot, we obtain the
ROC curve: on the y-axis we present the bad score
distribution function and on the x-axis the good score
distribution function: sensitivity vs (1-specificity(x)).

The KS distance represents the score where the horizontal
distance between the ROC curve and the diagonal line is
maximum (slope=1).

Gini coefficient is two times the area between the diagonal line
and the ROC Curve.

In the ROC curve, KS is the point where the curve has a slope
= 1 or the greater distance to the diagonal.
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Calibration Curve

Measures the error between the predicted frequencies of an
event and the observed frequencies.

In most machine learning applications, we use χ2 test to
determine the statistical significance of the error.
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